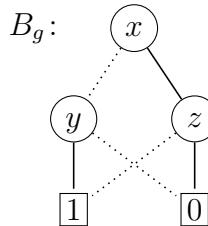


This exam consists of five exercises. The available points for each item are written in the margin. You need at least 50 points to pass. ***Explain your answers to the first four exercises!***

[1] Consider the boolean function f defined by $f(x, y, z) = x \oplus (\bar{y} + z)$ and the BDD B_g



[6] (a) Compute a reduced OBDD for f with variable ordering $[x, y, z]$.
 [7] (b) Starting from B_g , compute a reduced OBDD that is equivalent to $\exists y. g$.
 [7] (c) Which subsets of $\{f, g\}$ are adequate?

[6] [2] (a) Compute a most general unifier of the terms

$$f(g(f(z, b), a, f(b, y)), f(y, x)) \quad \text{and} \quad f(g(y, z, f(x, f(a, x))), v)$$

or argue why this is not possible. Here, a and b are constants, f is a binary function, g is a ternary function, and v, x, y and z are variables.

[7] (b) Use resolution to determine satisfiability of the following CNF:

$$(p \vee \neg q) \wedge (r \vee p \vee \neg s) \wedge (\neg r \vee \neg p) \wedge (\neg s \vee q)$$

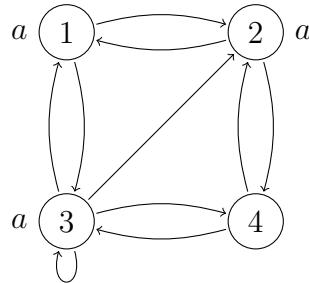
[7] (c) Transform the following formula into an equisatisfiable Skolem normal form:

$$\exists x (\forall y (P(x) \rightarrow Q(y, x))) \rightarrow \forall z P(z)$$

[3] For each of the following sequents, either give a natural deduction proof or find a model which does not satisfy it.

[6] (a) $\neg(p \wedge q) \vdash \neg p \vee \neg q$
 [7] (b) $\vdash \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \forall x (P(x) \rightarrow \exists y Q(y))$
 [7] (c) $\vdash \forall x \forall y (R(x, y) \rightarrow (\exists z (R(x, z) \wedge R(z, y))))$

4 Consider the following model \mathcal{M} :



[6] (a) Use the CTL model checking algorithm to determine in which states of \mathcal{M} the CTL formula $\varphi = \text{AF E}[\text{AX } a \text{ U EX } \neg a]$ holds.

[8] (b) For each $1 \leq i \leq 4$ construct a CTL formula ψ_i which holds only in state i of \mathcal{M} .

[6] (c) Find an LTL formula χ such that neither $\mathcal{M}, 2 \models \chi$ nor $\mathcal{M}, 2 \models \neg \chi$.

[20] 5 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

statement

The set $\{\text{EX, EU, AF}\}$ is adequate for CTL.

The formulas $(p \vee q) \wedge \neg p$ and \top are equisatisfiable.

Resolution is sound and complete for predicate logic.

Intuitionistic logics do not use LEM, PBC and $\rightarrow e$.

Deciding the satisfiability of CNF formulas is NP-complete.

The formula $(p \wedge q \rightarrow s) \wedge (s \rightarrow r) \wedge (q \rightarrow \perp)$ is a Horn formula.

Every boolean function has a unique representation as reduced BDD.

The set $[\![\text{AF } \varphi]\!]$ is the least fixed point of function $F_{\text{AF}}(X) = [\![\varphi]\!] \cap \text{pre}_\vee(X)$.

The sequent $\exists x \exists y (P(x, y) \vee P(y, x)), \neg \exists x P(x, x) \vdash \exists x \exists y \neg(x = y)$ is valid.

An n -ary boolean function f is not self-dual if and only if $f(b_1, \dots, b_n) = f(\overline{b_1}, \dots, \overline{b_n})$ for all $b_1, \dots, b_n \in \{0, 1\}$.