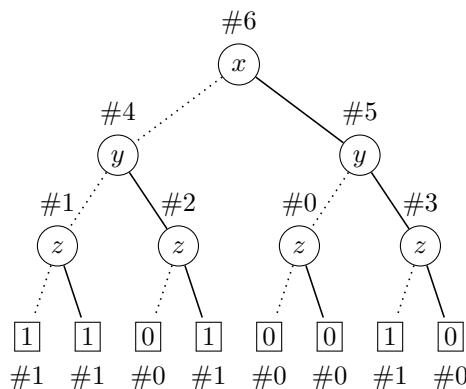


1 (a) *answer + explanation*

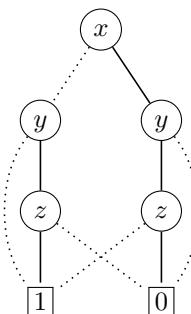
From the table

x	y	z	$f(x, y, z)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

we obtain the binary decision tree

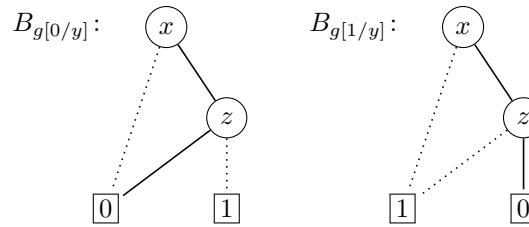


Applying the reduce algorithm produces the desired reduced OBDD:

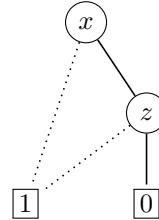


(b) *answer + explanation*

Applying `restrict` yields reduced OBDDs for $B_{g[0/y]}$ and $B_{g[1/y]}$:



Computing `apply(+, B_{g[0/y]}, B_{g[1/y]})` yields the reduced OBDD for $\exists y. f$



which is equal to $B_{g[1/y]}$.

(c) *answer + explanation*

We have $g(0, 0, 0) = g(1, 1, 1) = f(1, 1, 1) = 0$ and $f(0, 0, 0) = 1$. Neither f nor g is monotone: $f(0, 0, 0) = 1 > 0 = f(0, 1, 0)$ and $g(1, 1, 0) = 1 > 0 = g(1, 1, 1)$. Moreover, $f(0, 1, 0) = 0 = f(1, 0, 1)$ and $g(0, 0, 0) = 0 = g(1, 1, 1)$, so f and g are not self-dual. The ANF of f is $1 \oplus x \oplus y \oplus yz$ and the ANF of g is $x \oplus y \oplus xy \oplus xz$. Both are not linear, so f and g are not affine. The following table summarizes our findings:

	f	g
$h(0, \dots, 0) \neq 0$	✓	
$h(1, \dots, 1) \neq 1$	✓	✓
not monotone	✓	✓
not self-dual	✓	✓
not affine	✓	✓

Hence, $\{f, g\}$ and $\{f\}$ are the adequate subsets of $\{f, g\}$.

(a) *answer + computation*

The terms are unifiable:

$$\begin{aligned}
 f(g(f(z, b), a, f(b, y)), f(y, x)) &\approx f(g(y, z, f(x, f(a, x))), v) \\
 &\quad \downarrow d \\
 g(f(z, b), a, f(b, y)) &\approx g(y, z, f(x, f(a, x))), f(y, x) \approx v \\
 &\quad \downarrow d \\
 f(z, b) &\approx y, a \approx z, f(b, y) \approx f(x, f(a, x)), f(y, x) \approx v \\
 &\quad \downarrow v \{ y \mapsto f(z, b) \} \\
 a \approx z, f(b, f(z, b)) &\approx f(x, f(a, x)), f(f(z, b), x) \approx v \\
 &\quad \downarrow v \{ z \mapsto a \} \\
 f(b, f(a, b)) &\approx f(x, f(a, x)), f(f(a, b), x) \approx v \\
 &\quad \downarrow d \\
 b \approx x, f(a, b) &\approx f(a, x), f(f(a, b), x) \approx v \\
 &\quad \downarrow v \{ x \mapsto b \} \\
 f(a, b) &\approx f(a, b), f(f(a, b), b) \approx v \\
 &\quad \downarrow t \\
 f(f(a, b), b) &\approx v \\
 &\quad \downarrow v \{ v \mapsto f(f(a, b), b) \} \\
 &\quad \square
 \end{aligned}$$

The resulting mgu is

$$\begin{aligned}
 &\{y \mapsto f(z, b)\} \{z \mapsto a\} \{x \mapsto b\} \{v \mapsto f(f(a, b), b)\} \\
 &= \{v \mapsto f(f(a, b), b), x \mapsto b, y \mapsto f(a, b), z \mapsto a\}
 \end{aligned}$$

(b) *answer + explanation*

Resolution produces the following clauses:

1. $\{p, \neg q\}$
2. $\{p, r, \neg s\}$
3. $\{\neg p, \neg r\}$
4. $\{q, \neg s\}$
5. $\{\neg q, \neg r\}$ resolve 1, 3, p
6. $\{p, \neg s\}$ resolve 1, 4, q
7. $\{r, \neg r, \neg s\}$ resolve 2, 3, p
8. $\{p, \neg p, \neg s\}$ resolve 2, 3, r
9. $\{p, \neg q, \neg s\}$ resolve 1, 8, p
10. $\{\neg r, \neg s\}$ resolve 3, 6, p
11. $\{\neg p, \neg r, \neg s\}$ resolve 3, 7, r
12. $\{\neg q, \neg r, \neg s\}$ resolve 1, 11, p

As there are no further resolvents, the formula is satisfiable.

(c) *answer + explanation*

We first transform the given formula into an equivalent prenex normal form:

$$\begin{aligned} & \exists x (\forall y (P(x) \rightarrow Q(y, x))) \rightarrow \forall z P(z) \\ & \equiv \forall x \exists y \forall z ((P(x) \rightarrow Q(y, x)) \rightarrow P(z)) \end{aligned}$$

Next, we transform the quantifier-free part of the prenex normal form into CNF:

$$\begin{aligned} & \equiv \forall x \exists y \forall z (\neg(\neg P(x) \vee Q(y, x)) \vee P(z)) \\ & \equiv \forall x \exists y \forall z ((P(x) \wedge \neg Q(y, x)) \vee P(z)) \\ & \equiv \forall x \exists y \forall z ((P(x) \vee P(z)) \wedge (\neg Q(y, x) \vee P(z))) \end{aligned}$$

We obtain an equisatisfiable Skolem normal form by replacing the existentially quantified variable y by the fresh Skolem function $f(x)$:

$$\approx \forall x \forall z ((P(x) \vee P(z)) \wedge (\neg Q(f(x), x) \vee P(z)))$$

3 (a)

answer

The sequent $\neg(p \wedge q) \vdash \neg p \vee \neg q$ is valid:

1	$\neg(p \wedge q)$	premise
2	$\neg(\neg p \vee \neg q)$	assumption
3	$\neg p$	assumption
4	$\neg p \vee \neg q$	$\vee i_1 \text{ ??}$
5	\perp	$\neg e \text{ ??, ??}$
6	p	PBC ??-??
7	$\neg q$	assumption
8	$\neg p \vee \neg q$	$\vee i_2 \text{ ??}$
9	\perp	$\neg e \text{ ??, ??}$
10	q	PBC ??-??
11	$p \wedge q$	$\wedge i \text{ ??, ??}$
12	\perp	$\neg e \text{ ??, ??}$
13	$\neg p \vee \neg q$	PBC ??-??

(b)

answer

The sequent $\vdash \forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \forall x (P(x) \rightarrow \exists y Q(y))$ is valid:

1	$\forall x \exists y (P(x) \rightarrow Q(y))$	assumption
2	x_0	
3	$P(x_0)$	assumption
4	$\exists y (P(x_0) \rightarrow Q(y))$	$\forall e \text{ ??}$
5	$y_0 P(x_0) \rightarrow Q(y_0)$	assumption
6	$Q(y_0)$	$\rightarrow e \text{ ??, ??}$
7	$\exists y Q(y)$	$\exists i \text{ ??}$
8	$\exists y Q(y)$	$\exists e \text{ ??, ??-??}$
9	$P(x_0) \rightarrow \exists y Q(y)$	$\rightarrow i \text{ ??-??}$
10	$\forall x (P(x) \rightarrow \exists y Q(y))$	$\forall i \text{ ??-??}$
11	$\forall x \exists y (P(x) \rightarrow Q(y)) \rightarrow \forall x (P(x) \rightarrow \exists y Q(y))$	$\rightarrow i \text{ ??-??}$

(c) *answer*

The sequent $\vdash \forall x \forall y (R(x, y) \rightarrow (\exists z (R(x, z) \wedge R(z, y))))$ is not valid. For instance, consider the model \mathcal{M} consisting of the set $\{a, b\}$ with interpretation $R^{\mathcal{M}} = \{(a, b)\}$ together with $l(x) = a$ and $l(y) = b$. We have $\mathcal{M} \models_l R(x, y)$ but $\mathcal{M} \models_l \exists z (R(x, z) \wedge R(z, y))$ does not hold.

4 (a) *answer + explanation*

From the table

	a	$\neg a$	$\text{AX } a$	$\text{EX } \neg a$	$\text{E}[\text{AX } a \cup \text{EX } \neg a]$	φ
1	✓			✓		✓
2	✓				✓	✓
3	✓			✓	✓	✓
4		✓	✓		✓	✓

we conclude that the CTL formula $\varphi = \text{AF E}[\text{AX } a \cup \text{EX } \neg a]$ holds in all states of \mathcal{M} .

(b) *answer + explanation*

For instance,

- i. $\psi_1 = a \wedge \text{AX } a$
- ii. $\psi_2 = \neg \text{EX EX } \neg a$
- iii. $\psi_3 = \text{EX } \neg a \wedge \text{EX EX } \neg a$
- iv. $\psi_4 = \neg a$

The correctness of these formulas is easily confirmed:

	a	$\neg a$	$\text{AX } a$	$\text{EX } \neg a$	$\text{EX EX } \neg a$	ψ_1	ψ_2	ψ_3	ψ_4
1	✓			✓		✓			
2	✓				✓		✓		
3	✓			✓		✓		✓	
4		✓	✓		✓				✓

(c) *answer + explanation*

For instance, $\chi = \mathsf{X} a$. We have $\mathcal{M}, 2 \not\models \chi$ because the path 243^ω does not satisfy χ . Also, $\mathcal{M}, 2 \not\models \neg\chi$ because the path 213^ω satisfies χ .

5 true false statement

The set $\{\text{EX}, \text{EU}, \text{AF}\}$ is adequate for CTL.

The formulas $(p \vee q) \wedge \neg p$ and \top are equisatisfiable.

Resolution is sound and complete for predicate logic.

Intuitionistic logicians do not use LEM, PBC and $\rightarrow\text{e}$.

Deciding the satisfiability of CNF formulas is NP-complete.

The formula $(p \wedge q \rightarrow s) \wedge (s \rightarrow r) \wedge (q \rightarrow \perp)$ is a Horn formula.

Every boolean function has a unique representation as reduced BDD.

The set $[\![\text{AF } \varphi]\!]$ is the least fixed point of function $F_{\text{AF}}(X) = [\![\varphi]\!] \cap \text{pre}_{\forall}(X)$.

The sequent $\exists x \exists y (P(x, y) \vee P(y, x)), \neg \exists x P(x, x) \vdash \exists x \exists y \neg(x = y)$ is valid.

An n -ary boolean function f is not self-dual if and only if $f(b_1, \dots, b_n) = f(\overline{b_1}, \dots, \overline{b_n})$ for all $b_1, \dots, b_n \in \{0, 1\}$.