
VO Program Verification
LVA 703083

Exam 1 – B June 23, 2025

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Well-Definedness of Functional Programs 26

Verification of Functional Programs 35

Single Choice 6

Verification of Imperative Programs 33∑
100

• The duration of the exam is 100 minutes, so 1 point = 1 minute.

• The available points per exercise are written in the margin.

• Write on the printed exam and use extra blank sheets if more space is required.

• Your answers can be written in English or German.

page 1 of 9

VO Functional Programming Exam 1 – B June 23, 2025

Exercise 1: Well-Definedness of Functional Programs 26
Consider the following functional program that computes the maximum of a list of natural numbers.

data Nat = Zero : Nat (1)

| Succ : Nat → Nat (2)

data List = Nil : List (3)

| Cons : Nat× List → List (4)

max(Succ(x), Succ(y)) = Succ(max(y, x)) (5)

max(Zero, y) = y (6)

max(x,Zero) = x (7)

maxlist(Cons(x,Nil)) = x (8)

maxlist(Cons(x,Cons(y, xs))) = maxlist(Cons(max(x, y), xs)) (9)

(a) (8)Is the program pattern disjoint and/or pattern complete? If not, then modify it in a sensible way such
that it becomes both pattern disjoint and pattern complete and briefly explain your modifications.

Solution: max is not pattern disjoint and we modify the second equation to

max(Zero, Succ(y)) = Succ(y)

which obviously preserves the semantics.

maxlist is not pattern complete, since the case maxlist(Nil) is missing. Again, defining maxlist(Nil) =
Zero is an equation that preserves the semantics, since Zero is the neutral element of the max-
operation over natural numbers.

page 2 of 9

VO Functional Programming Exam 1 – B June 23, 2025

(b) (8)First, compute all dependency pairs of the program. Second, indicate which of these pairs can be
removed by the subterm-criterion and/or by the size-change principle with a brief justification why
these pairs can be removed or why they cannot be removed.

Solution: There are only two dependency pairs.

max♯(Succ(x), Succ(y)) = max♯(y, x) (10)

maxlist♯(Cons(x,Cons(y, xs))) = maxlist♯(Cons(max(x, y), xs)) (11)

The dependency pair for max can be removed by the size-change principle: there are only two
multigraphs: {1 ≻ 2, 2 ≻ 1} and {1 ≻ 1, 2 ≻ 2} where only the latter one is idem-potent, and that
contains a strict edge from an argument to itself.

The dependency pair for maxlist cannot be removed, as there is only one argument of maxlist♯,
and Cons(x,Cons(y, xs))▷Cons(max(x, y), xs) does not hold (although the list in obviously getting
shorter).

(c) (10)Compute and write down the set of usable equations w.r.t. the dependency pairs of maxlist♯.

Afterwards, prove termination of maxlist by a polynomial interpretation. You only have to provide the
interpretations of the relevant function symbols, and do not have to argue why these interpretations
satisfy the termination constraints.

pmaxlist♯(xs) = . . .

. . . = . . .

Solution: The usable equations are the max-equations.

For the interpretation we interpret natural numbers by themselves, we encode the list length. max
is interpreted as sum.

pmaxlist♯(xs) = xs

pSucc(x) = 1 + x

pZero = pNil = 0

pmax(x, y) = x+ y

pCons(x, xs) = 1 + xs

page 3 of 9

VO Functional Programming Exam 1 – B June 23, 2025

Exercise 2: Verification of Functional Programs 35
Consider the following functional program on lists over some element type E and Booleans, where f : E → Bool
is some defined function where the defining equations are not of interest for this exam question.

f(. . .) = . . .

if(True, xs, ys) = xs

if(False, xs, ys) = ys

filter(Nil) = Nil

filter(Cons(x, xs)) = if(f(x),Cons(x, filter(xs)), filter(xs))

(a) (5)Specify the property that filter(xs) is always shorter than xs. To this end, you should define a recursive
function shorter : List× List → Bool such that

• shorter checks that the second argument is at least as long as the first argument, and

• shorter does not invoke any other auxiliary algorithm; in particular, there should not be any defini-
tion of length or lessOrEqual or similar functions.

and then write down the intended property with the help of shorter.

(b) (30)Provide a proof of the specified property by using induction and equational reasoning via ⇝.

• Briefly state on which variable(s) you perform induction, and which induction scheme you are using.

• Write down each case explicitly and also write down any IH that you get, including quantifiers.

• Write down each single ⇝-step in your proof.

• You will require a case-analysis within the inductive proof for the if-then-else, e.g., you might have
to consider two cases f(x) = True and f(x) = False.

• You will need at least one further auxiliary property, which is a monotonicity property of the
shorter-function of the form shorter(. . . , . . .) −→ shorter(. . . , . . .). Write down this property and
prove it in the same way in that you have to prove the main property.
If you require further auxiliary properties, just state them without giving a proof.

• You may write just b instead of b =Bool True within your proofs.

• In case you did not solve part (a), you can ask the instructor for the solution to part (a) and
continue here, but then part (a) will be graded with 0 points.

page 4 of 9

VO Functional Programming Exam 1 – B June 23, 2025

Solution:

1. We implement shorter as follows:

shorter(Nil, xs) = True

shorter(Cons(y, ys),Nil) = False

shorter(Cons(y, ys),Cons(x, xs)) = shorter(ys, xs)

and then the desired property becomes

∀xs. shorter(filter(xs), xs)

2. We prove the property by structural induction on xs.

• case Nil:
There is no IH and we derive:

shorter(filter(Nil),Nil)

⇝ shorter(Nil,Nil)

⇝ True

⇝ true

• case Cons(x, xs):
The IH is shorter(filter(xs), xs) and we derive:

shorter(filter(Cons(x, xs)),Cons(x, xs))

⇝ shorter(if(f(x),Cons(x, filter(xs)), filter(xs)),Cons(x, xs))

and here we get stuck with pure simplification. In order to proceed we perform a case analysis
on f(x).

– if f(x) = True then we continue as follows

shorter(if(f(x),Cons(x, filter(xs)), filter(xs)),Cons(x, xs))

= shorter(if(True,Cons(x, filter(xs)), filter(xs)),Cons(x, xs))

⇝ shorter(Cons(x, filter(xs)),Cons(x, xs))

⇝ shorter(filter(xs), xs)

⇝ True

⇝ true

– if f(x) = False then we continue as follows

shorter(if(f(x),Cons(x, filter(xs)), filter(xs)),Cons(x, xs))

= shorter(if(False,Cons(x, filter(xs)), filter(xs)),Cons(x, xs))

⇝ shorter(filter(xs),Cons(x, xs))

We again get stuck, since the IH has the stronger property shorter(filter(xs), xs); hence
we need an auxiliary property that tells us that adding a Cons in the second argument
preserves being shorter. Our auxiliary property is

∀xs, ys, z. shorter(ys, xs) −→ shorter(ys,Cons(z, xs))

and using this lemma and the IH with conditional simplification leads to

shorter(filter(xs),Cons(x, xs))⇝ True⇝ true

page 5 of 9

VO Functional Programming Exam 1 – B June 23, 2025

In order to show the auxiliary property we use induction on xs and ys w.r.t. algorithm shorter.

• first equation:

shorter(Nil, xs) −→ shorter(Nil,Cons(z, xs))

⇝ shorter(Nil, xs) −→ True

⇝ shorter(Nil, xs) −→ true

⇝ true

• second equation:

shorter(Cons(y, ys),Nil) −→ shorter(Cons(y, ys),Cons(z,Nil))

⇝ False −→ shorter(Cons(y, ys),Cons(z,Nil))

⇝ false −→ shorter(Cons(y, ys),Cons(z,Nil))

⇝ true

• third equation with IH ∀z. shorter(ys, xs) −→ shorter(ys,Cons(z, xs))

shorter(Cons(x, xs),Cons(y, ys)) −→ shorter(Cons(y, ys),Cons(z,Cons(x, xs)))

⇝ shorter(ys, xs) −→ shorter(Cons(y, ys),Cons(z,Cons(x, xs)))

⇝ shorter(ys, xs) −→ shorter(ys,Cons(x, xs))

⇝ True

⇝ true

page 6 of 9

VO Functional Programming Exam 1 – B June 23, 2025

Exercise 3: Single Choice 6
For each statement indicate whether it is true (✓) or false (✗). Giving the correct answer is worth 3 points,
giving no answer counts 1 point, and giving the wrong answer counts 0 points (for that statement).

1. ✓ Statement: A correctness proof via refinement roughly works as follows: one shows that an abstract
algorithm satisfies some property P , and that a concrete algorithm is a correct implementation of the
abstract algorithm in order to show that the concrete algorithm has property P .

2. ✗ Assume there is some algorithm A computing function f with certificate generation. Further
assume that there is a certificate checking algorithm C for function f , in particular supporting the
certificates that are generated by A.

Statement: If algorithm A is indeed a correct implementation of f , then all certificates generated by A
will be accepted by C.

page 7 of 9

VO Functional Programming Exam 1 – B June 23, 2025

Exercise 4: Verification of Imperative Programs 33
Consider the following program P . You can assume that array a has a length of n, i.e., a = [a[0], ..., a[n− 1]]
and n ≥ 0.

b := false;

i := n;

while (i > 0) {

i := i - 1;

b := (b || (a[i] == x));

}

(a) (3)Figure out what P computes in variable b. Write this down informally, and also provide a specification
in form of a Hoare triple.

Solution: b stores whether x occurs in a. Since a and x are not modified by the program, we do
not introduce logical variables in this specification.

Formally: (|n ≥ 0|)P (|b = (∃0 ≤ k < n. a[k] = x)|)

(b) (10)Construct a proof tableau for proving termination.

If required, it is allowed to add preconditions which are essential to ensure termination.

Clearly specify the variant e.

e = i

(| n >= 0 |)

b := false;

(| n >= 0 |)

i := n;

(| i >= 0 |)

while (i > 0) {

(| e0 = i >= 0 ∧ i > 0 |)

(| e0 > i - 1 >= 0 |)

i := i - 1;

(| e0 > i >= 0 |)

b := b || a[i] == x;

(| e0 > i >= 0 |)

}

page 8 of 9

VO Functional Programming Exam 1 – B June 23, 2025

(c) (20)Prove partial correctness of the Hoare triple that you specified in the first part.

(| n >= 0 |)

(| n >= 0 ∧ false = (∃ n <= k < n. a[k] = x) |)

b := false;

(| n >= 0 ∧ b = (∃ n <= k < n. a[k] = x) |)

i := n;

(| i >= 0 ∧ b = (∃ i <= k < n. a[k] = x) |)

while (i > 0) {

(| i > 0 ∧ i >= 0 ∧ b = (∃ i <= k < n. a[k] = x) |)

(| i - 1 >= 0 ∧ (b || a[i-1] == x) = (∃ i-1 <= k < n. a[k] = x) |)

i := i - 1;

(| i >= 0 ∧ (b || a[i] == x) = (∃ i <= k < n. a[k] = x) |)

b := b || a[i] == x;

(| i >= 0 ∧ b = (∃ i <= k < n. a[k] = x) |)

}

(| !i > 0 ∧ i >= 0 ∧ b = (∃ i <= k < n. a[k] = x) |)

(| b = (∃ 0 <= k < n. a[k] = x) |)

Fully formally, one should add i ≤ n to the invariant, in order to verify the implication within the
while-loop, but it is not expected to add this condition when solving the exam.

page 9 of 9

