
Exercises Week 10

1. [1+1 points] Consider the type ’a tree and the mirroring function
mirror (see the slides of w10-1x2.pdf or w10-1x2.pdf).

(a) size t returns the number of nodes in the tree t. Implement size.

(b) Show that size (mirror t) = size t for all trees t.

2. [2 points] Consider the functions

let rec rev = function

| [] -> []

| x :: xs -> rev xs @ [x]

let rec rev_append l1 l2 =

match l1 with

| [] -> l2

| a :: l -> rev_append l (a :: l2)

let rev’ l = rev_append l []

Show that rev l = rev′ l for all lists l.

3. [1+1 points]

(a) Define a tail recursive version length’ of length:

let rec length = function

| [] -> 0

| x :: xs -> 1 + length xs

(b) Prove that length l = length’ l holds for all lists l.

4. [1+1 points] Consider the following type for expressions:

type e = Var of string | T | F

| Not of e | And of e * e | Or of e * e

(a) Use the following 10-rule rewrite system to implement simplify.

Not T → F And (T, e) → e Or (T, e) → T

Not F → T And (e, T) → e Or (e, T) → T

And (F, e) → F Or (F, e) → e

And (e, F) → F Or (e, F) → e

(b) substitute x e1 e2 substitutes the expression e1 into the variable x

in the expression e2. Implement it.

simplify (And (Or (Not T, Not (Var "x")),

And (Var "y", (Or (T, F)))));;

- : e = And (Not (Var "x"), Var "y")

substitute "y" T (And (Not (Var "x"), Var "y"));;

- : e = And (Not (Var "x"), T)

Submit yourMatrNr.ml before 23:59 on January 11.

(* 1(a) *)

let rec size = function ..

(* 1(b) mirror (size t) = size t for all trees t.

Proof by induction on t.

Base case:

...

*)

