INTRODUCTION TO DECLARATIVE PROGRAMMING Name:
FuNCTIONAL PROGRAMMING WITH OCAML MatrNr:
JANUARY 27, 2006

(1] [24-2 POINTS]

Fill in boxes so that the following equalities hold for all lists [and all functions f.

(a) List.map f [= List.fold right | 1] |

(b) List.revmap f [= List.fold left | | |1

Note that List.revmap f [x1; - ;2] = [f zn;- - f x1].

[2] [2+8 POINTS]
(a) Define a tail recursive version length’ of length:

let rec length = function
I 0 ->0
| x :: xs -> 1 + length xs

(b) Prove that length | = length’ [holds for all lists [.

@ [8 POINTS]

Consider the following type of binary trees:
type tree = Leaf | Node of tree * tree

We say that a tree t is balanced if all paths from the root to any leaf have the same length

balanced Leaf;;

- : bool = true

balanced (Node (Leaf, Leaf));;

- : bool = true

balanced (Node (Leaf, Node (Leaf, Leaf)));;

- : bool = false

balanced (Node (Node (Leaf, Leaf), Leaf));;

: bool = false

balanced (Node (Node (Leaf, Leaf), Node (Leaf, Leaf)));;
: bool = true

. The
function balanced t returns true if ¢ is balanced, false otherwise. Implement balanced.

Eﬂ [10 POINTS]
Suppose that we use adjacency lists to represent finite directed graphs.
type ’a graph = (’a * ’a list) list

We say that in a graph g a node y is reachable from a node x if there is a path from x
to y in ¢g. Implement the function reachable from : ’a graph -> ’a -> ’a list. Here
reachable from g x returns a list containing all reachable nodes from z in g. For example,

let g = [(1,[31);(2,031);(3,[41);(4,[3;5;61);(5,[1);(6,[1)1;;
reachable_from g 3;;
- : int list = [3; 4; 5; 6]

(You do not need to eliminate duplication from resulting lists.)

Name:
[5] [8 POINTS]

Consider the following expressions of the type expr:

type expr =

| Int of int

| Add of expr * expr

| Sub of expr * expr

| Let of string * expr * expr
type env = (string * int) list
exception Unbound of string

For example, the expression “let x = 3 - 1 in x + x” is represented by
Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")).

Implement an evaluator for expr.

eval [] (Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")));;
- : int = 4

eval [("x", 1)] (Add (Int 3, Var "x"));;

- : int = 4

eval [] (Add (Int 3, Var "x"));;
Exception: Unbound "x".

@ [10 POINTS]

Recall the following simplification rules for type inference problems.

A z:T ~ L if z ¢ dom(A)
A z:T ~ Alz)=T1 if z € dom(A)
A (funz —e): 7~ Jaj, 0. (A, x a1 >e:ay A T=a3 — a9)

A>ejey: T ~ Ja.(Apep:a—T N A>ey:)

where z is a constant or a variable, and «, a1, and ay are fresh type variables. Solve the type
inference problem:
Ap (funx —z2=0): «

Here A is the type environment defined by A(0) = int and A(=) = int — int — bool.

