
Introduction to Declarative Programming Name:
Functional Programming with OCaml MatrNr:
January 27, 2006

1 [2+2 points]

Fill in boxes so that the following equalities hold for all lists l and all functions f .

(a) List.map f l = List.fold right l

(b) List.rev map f l = List.fold left l

Note that List.rev map f [x1; · · · ;xn] = [f xn; · · · ; f x1].

2 [2+8 points]

(a) Define a tail recursive version length’ of length:

let rec length = function

| [] -> 0

| x :: xs -> 1 + length xs

(b) Prove that length l = length’ l holds for all lists l.

3 [8 points]

Consider the following type of binary trees:

type tree = Leaf | Node of tree * tree

We say that a tree t is balanced if all paths from the root to any leaf have the same length. The
function balanced t returns true if t is balanced, false otherwise. Implement balanced.

balanced Leaf;;

- : bool = true

balanced (Node (Leaf, Leaf));;

- : bool = true

balanced (Node (Leaf, Node (Leaf, Leaf)));;

- : bool = false

balanced (Node (Node (Leaf, Leaf), Leaf));;

- : bool = false

balanced (Node (Node (Leaf, Leaf), Node (Leaf, Leaf)));;

- : bool = true

4 [10 points]

Suppose that we use adjacency lists to represent finite directed graphs.

type ’a graph = (’a * ’a list) list

We say that in a graph g a node y is reachable from a node x if there is a path from x

to y in g. Implement the function reachable from : ’a graph -> ’a -> ’a list. Here
reachable from g x returns a list containing all reachable nodes from x in g. For example,

let g = [(1,[3]);(2,[3]);(3,[4]);(4,[3;5;6]);(5,[]);(6,[])];;

reachable_from g 3;;

- : int list = [3; 4; 5; 6]

(You do not need to eliminate duplication from resulting lists.)

Name:

5 [8 points]

Consider the following expressions of the type expr:

type expr =

| Int of int

| Add of expr * expr

| Sub of expr * expr

| Let of string * expr * expr

type env = (string * int) list

exception Unbound of string

For example, the expression “let x = 3 - 1 in x + x” is represented by

Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")).

Implement an evaluator for expr.

eval [] (Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")));;

- : int = 4

eval [("x", 1)] (Add (Int 3, Var "x"));;

- : int = 4

eval [] (Add (Int 3, Var "x"));;

Exception: Unbound "x".

6 [10 points]

Recall the following simplification rules for type inference problems.

AB z : τ ⊥ if z 6∈ dom(A)

AB z : τ A(z) =̇ τ if z ∈ dom(A)

AB (fun x → e) : τ ∃α1, α2.(A, x : α1 B e : α2 ∧ τ =̇α1 → α2)

AB e1e2 : τ ∃α.(AB e1 : α → τ ∧ AB e2 : α)

where z is a constant or a variable, and α, α1, and α2 are fresh type variables. Solve the type
inference problem:

AB (fun x → x = 0) : α

Here A is the type environment defined by A(0) = int and A(=) = int → int → bool.

