Introduction to Declarative Programming

Fill in boxes so that the following equalities hold for all lists l and all functions f.
(a) List.map $f l=$ List.fold_right \square
\square
(b) List.rev_map $f l=$ List.fold_left \square
\square
Note that List.rev_map $f\left[x_{1} ; \cdots ; x_{n}\right]=\left[f x_{n} ; \cdots ; f x_{1}\right]$.

(a) Define a tail recursive version length' of length:

```
let rec length = function
    | [] -> 0
    | x :: xs -> 1 + length xs
```

(b) Prove that length $l=$ length' l holds for all lists l.

Consider the following type of binary trees:

```
type tree = Leaf | Node of tree * tree
```

We say that a tree t is balanced if all paths from the root to any leaf have the same length. The function balanced t returns true if t is balanced, false otherwise. Implement balanced.

```
# balanced Leaf;;
- : bool = true
# balanced (Node (Leaf, Leaf));;
- : bool = true
# balanced (Node (Leaf, Node (Leaf, Leaf)));;
- : bool = false
# balanced (Node (Node (Leaf, Leaf), Leaf));;
- : bool = false
# balanced (Node (Node (Leaf, Leaf), Node (Leaf, Leaf)));;
- : bool = true
```

Suppose that we use adjacency lists to represent finite directed graphs.
type 'a graph = ('a * 'a list) list
We say that in a graph g a node y is reachable from a node x if there is a path from x to y in g. Implement the function reachable_from : 'a graph -> 'a -> 'a list. Here reachable_from $g x$ returns a list containing all reachable nodes from x in g. For example,

```
# let g = [(1,[3]);(2,[3]);(3,[4]);(4,[3;5;6]);(5,[]);(6,[])];;
# reachable_from g 3;;
- : int list = [3; 4; 5; 6]
```

(You do not need to eliminate duplication from resulting lists.)

Consider the following expressions of the type expr:

```
type expr =
    | Int of int
    | Add of expr * expr
    | Sub of expr * expr
    | Let of string * expr * expr
type env = (string * int) list
exception Unbound of string
```

For example, the expression "let $\mathrm{x}=3$ - 1 in $\mathrm{x}+\mathrm{x}$ " is represented by

```
Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")).
```

Implement an evaluator for expr.

```
# eval [] (Let ("x", Sub (Int 3, Int 1), Add (Var "x", Var "x")));;
- : int = 4
# eval [("x", 1)] (Add (Int 3, Var "x"));;
- : int = 4
# eval [] (Add (Int 3, Var "x"));;
Exception: Unbound "x".
```

Recall the following simplification rules for type inference problems.

$$
\begin{array}{lll}
A \triangleright z: \tau & \rightsquigarrow \perp & \text { if } z \notin \operatorname{dom}(A) \\
A \triangleright z: \tau & \rightsquigarrow A(z) \doteq \tau & \text { if } z \in \operatorname{dom}(A) \\
A \triangleright(\operatorname{fun} x \rightarrow e): \tau & \rightsquigarrow \exists \alpha_{1}, \alpha_{2} \cdot\left(A, x: \alpha_{1} \triangleright e: \alpha_{2} \wedge \tau \doteq \alpha_{1} \rightarrow \alpha_{2}\right) \\
A \triangleright e_{1} e_{2}: \tau & \rightsquigarrow \exists \alpha \cdot\left(A \triangleright e_{1}: \alpha \rightarrow \tau \wedge A \triangleright e_{2}: \alpha\right)
\end{array}
$$

where z is a constant or a variable, and α, α_{1}, and α_{2} are fresh type variables. Solve the type inference problem:

$$
A \triangleright(\text { fun } x \rightarrow x=0): \alpha
$$

Here A is the type environment defined by $A(0)=$ int and $A(=)=$ int \rightarrow int \rightarrow bool.

