Schedule

SCHEDULE

w date topic

7 November 25 introduction
8- December 2 higher-order functions, lists, trees
9. December 9 graphs, combinatories

10 December 16 program reasoning
11 January $13 \quad \lambda$ and interpreter
12 January 20 type system
13 January 27 exam part 2

CONTENTS

1. quiz
2. tail recursion
3. induction proofs
4. n-queens problem

Quiz

use recursion to implement

- fold_left
- fold_right

> List.fold_left (०) $e\left[x_{1} ; \cdots ; x_{n}\right]=\left(e \circ x_{1}\right) \circ \cdots \circ x_{n}$ List.fold_right (o) $\left[x_{1} ; \cdots ; x_{n}\right] e=x_{1} \circ \cdots \circ\left(x_{n} \circ e\right)$
use recursion to implement

- for_all
- exists

List.for_all $p\left[x_{1} ; \cdots ; x_{n}\right]=p x_{1} \& \& \cdots \& \& p x_{n}$ List.exists $p\left[x_{1} ; \cdots ; x_{n}\right]=p x_{1}\|\cdots\| p x_{n}$
use fold_left or fold_right to implement

- for_all
- exists

List.for_all $p\left[x_{1} ; \cdots ; x_{n}\right]=p x_{1} \& \& \cdots \& \& p x_{n}$ List.exists $p\left[x_{1} ; \cdots ; x_{n}\right]=p x_{1}\|\cdots\| p x_{n}$

Tail Recursion

Stack Problem of Recursion

\# let rec sum $\mathrm{n}=$

```
    if n = 0 then 0 else n + sum (n - 1)
```

\# sum 100000; ;
Stack overflow during evaluation (looping recursion?).
recursion may cause stack overflow. why?

	stack
$=$	register
$=$	sum 3
$=$	sum 2
$=$	
$=$	

Tail Recursion

- tail call is outermost function call in expression
- tail recursion consumes no stack
let rec sum $\mathrm{n}=$
if $n=0$ then 0 else $n+\operatorname{sum}(n-1)$
\Downarrow tail recursive version of sum
let rec sum_aux m $n=$
if $\mathrm{n}=0$ then m else sum_aux $(\mathrm{m}+\mathrm{n})(\mathrm{n}-1)$
let sum' $\mathrm{n}=$ sum_aux 0 n

	register
sum	3
= sum_aux	03
= sum_aux	32
= sum_aux	51
= sum_aux	60
$=6$	

Naive Version of Reversing

$$
\begin{array}{ll}
(@)[] y s & =y s \\
(@)(x:: x s) y s & =x::(x s @ y s) \\
\operatorname{rev}[] & =[] \\
\operatorname{rev}(x:: x s) & =\operatorname{rev} x s @[x]
\end{array}
$$

$$
\begin{aligned}
& \operatorname{rev}[1 ; 2 ; 3] & & \\
= & \operatorname{rev}[2 ; 3] @[1] & & (3::([] @[2])) @[1] \\
= & (\operatorname{rev}[3] @[2]) @[1] & & =[3 ; 2] @[1] \\
= & ((\operatorname{rev}[] @[3]) @[2]) @[1] & & =3::([2] @[1]) \\
= & (([] @[3]) @[2]) @[1] & & =3:: 2::([] @[1]) \\
= & ([3] @[2]) @[1] & & =3:: 2::[1]
\end{aligned}
$$

Tail-recursive Version of Reversing

rev_append [] list	$=$ list
rev_append $(x:: x s)$ list	$=$ rev_append $x s(x::$ list $)$
rev list	$=$ rev_append list []

rev $[1 ; 2 ; 3]$

$$
\begin{array}{lrr}
=\text { rev_append }[1 ; 2 ; 3] \\
=\text { rev_append } & {[2 ; 3]} & {[1]} \\
=\text { rev_append } & {[3]} & {[2 ; 1]} \\
=\text { rev_append } & {[][3 ; 2 ; 1]} \\
=[3 ; 2 ; 1]
\end{array}
$$

Induction and Recursion

Induction on lists

THEOREM

$$
\text { length }(x s @ y s)=\text { length } x s+\text { length } y s
$$

PROOF by induction on $x s$

- base case $x s=[]$

$$
\begin{aligned}
\text { length }([] @ y s) & =\text { length } y s & & \text { def of @ } \\
& =\text { length }[]+\text { length ys } & & \text { def of length }
\end{aligned}
$$

- inductive step $x s=x:: x s^{\prime}$

$$
\begin{aligned}
\text { length }\left(\left(x:: x s^{\prime}\right) @ y s\right) & =\text { length }\left(x::\left(x s^{\prime} @ y s\right)\right) & & \text { def of @ } \\
& =1+\text { length }\left(x s^{\prime} @ y s\right) & & \text { def of length } \\
& =1+\text { length } x s^{\prime}+\text { length ys } & & \text { I.H. } \\
& =\text { length }\left(x:: x s^{\prime}\right)+\text { length } y s & & \text { def of length }
\end{aligned}
$$

Mirroring Property: List

THEOREM

$$
\operatorname{rev}(\operatorname{rev} l)=l
$$

PROOF by induction on l

- base case $l=[]$

$$
\begin{aligned}
\operatorname{rev}(\operatorname{rev}[]) & =\operatorname{rev}[] & & \text { def of rev } \\
& =[] & & \text { def of rev }
\end{aligned}
$$

- inductive step $l=x:: x s$

$$
\begin{aligned}
\operatorname{rev}(\operatorname{rev}(x:: x s)) & =\operatorname{rev}(\operatorname{rev} x s @[x]) & & \text { def of rev } \\
& =x:: \operatorname{rev}(\operatorname{rev} x s) & & \text { lemma } \\
& =x:: x s & & \text { I.H. }
\end{aligned}
$$

LEMMA $\operatorname{rev}(y s @[x])=x::$ rev $y s$

Mirroring

type 'a tree = Empty | Node of 'a tree * 'a * 'a tree
let rec mirror $=$ function
| Empty -> Empty
| Node (l, x, r) -> Node (mirror r, x, mirror l)

Mirroring Property: Trees

$$
\operatorname{mirror}(\operatorname{mirror} t)=t
$$

PROOF by induction on t

- base case $t=$ Empty

$$
\begin{aligned}
\operatorname{mirror}(\text { mirror Empty }) & =\text { mirror Empty } & & \text { def of mirror } \\
& =\text { Empty } & & \text { def of mirror }
\end{aligned}
$$

- inductive step $t=\operatorname{Node}(l, x, r)$

$$
\begin{array}{rlr}
& \text { mirror }(\text { mirror }(\operatorname{Node}(l, x, r)) & \\
= & \text { mirror }(\operatorname{Node}(\text { mirror } r, x, \text { mirror } l)) & \text { def of mirror } \\
= & \operatorname{Node}(\text { mirror }(\text { mirror } l), x, \text { mirror }(\text { mirror } r)) & \text { I.H. (twice }) \\
= & \operatorname{Node}(l, x, r) &
\end{array}
$$

N-Queens Problem

N-Queens Problem: Generate and Test

	0	1	2	3	4	5	6	7
0				Q				
1		Q						
2								Q
3						Q		
4	Q							
5			Q					
6					Q			
7							Q	

```
let safe ((x1, y1) as q1) ((x2, y2) as q2) =
    (x1 <> x2 && x1 + y1 <> x2 + y2 &&
    y1 <> y2 && x1 - y1 <> x2 - y2 ) ||
    q1 = q2
```

let ok qs = List.for_all (fun q1 -> (List.for_all (safe q1) qs)) qs

N-Queens Problem: Generate and Test

```
# permutation (range 0 7);;
- : int list list =
[[0; 1; 2; 3; 4; 5; 6; 7]; [1; 0; 2; 3; 4; 5; 6; 7];
    [1; 2; 0; 3; 4; 5; 6; 7]; [1; 2; 3; 0; 4; 5; 6; 7]; .. ]
# List.combine (range 0 7) [4;1;5;0;6;3;7;2];;
- : (int * int) list =
[(0, 4); (1, 1); (2, 5); (3, 0); (4, 6); (5, 3); (6, 7); (7, 2)]
```

let solve $\mathrm{n}=$
let $1=$ range $0(n-1)$ in
List.find ok (List.map (List.combine l) (permutation l))

