Schedule

SCHEDULE

10 December 16 | program reasoning

11 January 13 A and interpreter
12 January 20 type system
13 January 27 exam part 2

| CONTENTS

quiz
tail recursion

induction proofs

= o

n-queens problem

Quiz

Q1

use recursion to implement

> fold_left

» fold_right
List.fold_left (o) e [x1;---;2,] = (eoxy)o-- 0z,
List.fold_right (o) [z1;--- ;2,] € = x10---0(xy06€)

Q2

use recursion to implement
» for_all

» exists

List.for_all p [x1;--- ;2] = pap && -+ && p z,

List.exists p [z1;-+- ;20 = pa1 || - [|pan

Q3

use fold_left or fold_right to implement
» for_all

» exists

List.for_all p [x1;--- ;2] = px1 && -+ && p z,

List.exists p [z1;-+- ;20 = pa1 || - [|pan

Tail Recursion

Stack Problem of Recursion

let rec sum n =
if n = 0 then 0 else n + sum (n - 1)

sum 100000; ;
Stack overflow during evaluation (looping recursion?).

recursion may cause stack overflow. why?

stack register
sum 3
= 3+ sum 2

=3+ (2+ sum 3)
34 (2+ (I4sum 0))

Tail Recursion

» | tail call | is outermost function call in expression
» tail recursion consumes no stack

let rec sum n =
if n = 0 then O else 'n + sum (n - 1)

|l tail recursive version of sum

let rec sum,aux m n =
if n = 0 then m else sumaux (m + n) (n - 1)
let sum’ n = sum_,aux O n

register
sum 3
=sum_aux 0 3
= sum_aux 3 2
=sum_aux 5 1
=sum_,aux 6 O

=6

Naive Version of Reversing

(@)] ys = ys
(@) (x :: xs) ys = x :: (xsQys)
rev] =
rev (z :: zs) = rev zsQ|[z]
rev [1;2; 3]
= rev [2;3] @ [1] =@ = ([@2])) @ [1]
= (rev 3] @ [2]) @ [1] = [3;2]@ [1]
= ((rev [] @ [3]) @ [2]) @ [1] = 3= ([2Ja [1))
= (([J] @ [3]) @ [2]) @ [1] =32 ([1))
= ([3] @ [2]) @ [1] =3:2:1]

Tail-recursive Version of Reversing

rev_append [| list
rev_append (z :: xs) list

rev [ist

= [ist

rev_append zs (x :: list)

rev_append list [|

rev [1;2; 3]
= rev_append [1;2; 3] 1
= rev_append [2;3] 1]
= rev_append 3] [2:1]
— rev_append] [352;1]

=[3;2;1]

10

THEOREM

| THEOREM |

PROOF

Induction and Recursion

11

Induction on lists

length (zsQys) = length xs + length ys

by induction on xs

> base case s = []

» inductive step s = = :: s

length ([]Qys) = length ys def of @

= length [] + length ys def of length

/

length ((z :: zs")Qys) = length (z :: (xs’'Qys)) def of @
=1+ length (zs'Qys) def of length
= 1+ length zs’ + length ys |.H.

= length (z :: zs") + length ys def of length

12

Mirroring Property: List

THEOREM |

rev (rev) =1

PROOFl by induction on [

> base case [= ||

rev (rev []) = rev [] def of rev
=[] def of rev

» inductive step [= x :: xs

rev (rev (x :: xs)) = rev (rev xs @ [z]) def of rev
= x :: rev (rev xs) lemma
=T TS |.H.

LEMMA | rev (ysQ[z]) = x :: rev ys

13

Mirroring

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree
let rec mirror = function

| Empty -> Empty
| Node (1, x, r) -> Node (mirror r, x, mirror 1)

mirror ¥\ = ¥\

14

Mirroring Property: Trees

H

THEOREM |

mirror (mirror t) =t

i

PROOFl by induction on ¢

» base case t = Empty

mirror (mirror Empty) = mirror Empty def of mirror

= Empty def of mirror

> inductive step ¢ = Node ([, z,r)

mirror (mirror (Node (I, z,7))

= mirror (Node (mirror 7, z, mirror 1)) def of mirror
= Node (mirror (mirror), x, mirror (mirror 7)) |.H. (twice)
= Node (I, z,r)

15

N-Queens Problem

16

N-Queens Problem: Generate and Test

01 2 3 4 5 6 7

Q

Q

w oOu B~ W N R O
'®)

let safe ((x1, y1) as ql1) ((x2, y2) as g2) =
(x1 <> x2 && x1 + y1 <> x2 + y2 &
y1 <> y2 & x1 - y1 <> x2 - y2) ||

ql = g2

let ok gs = List.for_all (fun ql1 -> (List.for_all (safe ql) gs)) gs

17

N-Queens Problem: Generate and Test

permutation (range 0 7);;
- : int list list =

[[0; 1; 2; 3; 4; 5; 6; 7]; [1; 0; 2; 3; 4; 5; 6; 7];
[1; 2; 0; 3; 4; 5; 6; 71; [1; 2; 3; 0; 4; 5; 6; 7]1; ..]
List.combine (range 0 7) [4;1;5;0;6;3;7;2];;

- : (int * int) list =
[(O, 4); (1, 1); (2, B); (3, 0); (4, 6); (5, 3); (6, 7); (7, 2)]

let solve n =
let 1 = range O (n - 1) in
List.find ok (List.map (List.combine 1) (permutation 1))

18

