
Schedule

SCHEDULE

w date topic
7 November 25 introduction
8 December 2 higher-order functions, lists, trees
9 December 9 graphs, combinatorics

10 December 16 program reasoning

11 January 13 λ and interpreter
12 January 20 type system
13 January 27 exam part 2

CONTENTS

1. quiz

2. tail recursion

3. induction proofs

4. n-queens problem

1

Quiz

2

Q1

use recursion to implement

I fold left

I fold right

List.fold left (◦) e [x1; · · · ;xn] = (e ◦ x1) ◦ · · · ◦ xn

List.fold right (◦) [x1; · · · ;xn] e = x1 ◦ · · · ◦ (xn ◦ e)

3

Q2

use recursion to implement

I for all

I exists

List.for all p [x1; · · · ;xn] = p x1 && · · · && p xn

List.exists p [x1; · · · ;xn] = p x1 || · · · || p xn

4

Q3

use fold left or fold right to implement

I for all

I exists

List.for all p [x1; · · · ;xn] = p x1 && · · · && p xn

List.exists p [x1; · · · ;xn] = p x1 || · · · || p xn

5

Tail Recursion

6

Stack Problem of Recursion

let rec sum n =
if n = 0 then 0 else n + sum (n - 1)

sum 100000;;
Stack overflow during evaluation (looping recursion?).

recursion may cause stack overflow. why?

stack register

sum 3
= 3+ sum 2
= 3 + (2+ sum 3)
= 3 + (2 + (1+sum 0))
= · · ·
= 6

7

Tail Recursion
I tail call is outermost function call in expression
I tail recursion consumes no stack

let rec sum n =
if n = 0 then 0 else n + sum (n - 1)

⇓ tail recursive version of sum

let rec sum aux m n =
if n = 0 then m else sum aux (m + n) (n - 1)

let sum’ n = sum aux 0 n

register

sum 3
= sum aux 0 3
= sum aux 3 2
= sum aux 5 1
= sum aux 6 0
= 6

8

Naive Version of Reversing

(@) [] ys = ys
(@) (x :: xs) ys = x :: (xs@ys)
rev [] = []
rev (x :: xs) = rev xs@[x]

rev [1; 2; 3]
= rev [2; 3] @ [1] = (3 :: ([] @ [2])) @ [1]
= (rev [3] @ [2]) @ [1] = [3; 2]@ [1]
= ((rev [] @ [3]) @ [2]) @ [1] = 3 :: ([2]@ [1])
= (([] @ [3]) @ [2]) @ [1] = 3 :: 2 :: ([]@ [1])
= ([3] @ [2]) @ [1] = 3 :: 2 :: [1]

9

Tail-recursive Version of Reversing

rev append [] list = list
rev append (x :: xs) list = rev append xs (x :: list)
rev list = rev append list []

rev [1; 2; 3]
= rev append [1; 2; 3] []
= rev append [2; 3] [1]
= rev append [3] [2; 1]
= rev append [] [3; 2; 1]
=[3; 2; 1]

10

Induction and Recursion

11

Induction on lists
THEOREM

length (xs@ys) = length xs + length ys

PROOF by induction on xs

I base case xs = []

length ([]@ys) = length ys def of @
= length [] + length ys def of length

I inductive step xs = x :: xs ′

length ((x :: xs ′)@ys) = length (x :: (xs ′@ys)) def of @
= 1 + length (xs ′@ys) def of length

= 1 + length xs ′ + length ys I.H.

= length (x :: xs ′) + length ys def of length

12

Mirroring Property: List
THEOREM

rev (rev l) = l

PROOF by induction on l

I base case l = []

rev (rev []) = rev [] def of rev

= [] def of rev

I inductive step l = x :: xs

rev (rev (x :: xs)) = rev (rev xs @ [x]) def of rev

= x :: rev (rev xs) lemma

= x :: xs I.H.

LEMMA rev (ys@[x]) = x :: rev ys
13

Mirroring

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree

let rec mirror = function
| Empty -> Empty
| Node (l, x, r) -> Node (mirror r, x, mirror l)

mirror


3

����� ��>
>

1
���� ��=

= E

2
���� ��=

= E

E E

 =

3
���� ��>

>>

E 1
���� ��=

=

E 2
���� ��=

=

E E

14

Mirroring Property: Trees
THEOREM

mirror (mirror t) = t

PROOF by induction on t

I base case t = Empty

mirror (mirror Empty) = mirror Empty def of mirror

= Empty def of mirror

I inductive step t = Node (l, x, r)

mirror (mirror (Node (l, x, r))
= mirror (Node (mirror r, x,mirror l)) def of mirror

= Node (mirror (mirror l), x,mirror (mirror r)) I.H. (twice)

= Node (l, x, r)

15

N-Queens Problem

16

N-Queens Problem: Generate and Test

let safe ((x1, y1) as q1) ((x2, y2) as q2) =

(x1 <> x2 && x1 + y1 <> x2 + y2 &&

y1 <> y2 && x1 - y1 <> x2 - y2) ||

q1 = q2

let ok qs = List.for all (fun q1 -> (List.for all (safe q1) qs)) qs

17

N-Queens Problem: Generate and Test

permutation (range 0 7);;

- : int list list =

[[0; 1; 2; 3; 4; 5; 6; 7]; [1; 0; 2; 3; 4; 5; 6; 7];

[1; 2; 0; 3; 4; 5; 6; 7]; [1; 2; 3; 0; 4; 5; 6; 7]; ..]

List.combine (range 0 7) [4;1;5;0;6;3;7;2];;

- : (int * int) list =

[(0, 4); (1, 1); (2, 5); (3, 0); (4, 6); (5, 3); (6, 7); (7, 2)]

let solve n =
let l = range 0 (n - 1) in
List.find ok (List.map (List.combine l) (permutation l))

18

