| SCHEDULE |

w date

10 December 16 ‘program reasoning‘

11 January 13
12 January 20
13 January 27

| CONTENTS |
quiz
tail recursion

induction proofs

e =

n-queens problem

Schedule

A and interpreter
type system
exam part 2

Quiz

Q1
use recursion to implement
» fold_left
» fold_right
List.fold_left (o) e [x1;--- ;2] = (eoxy)o---o0x,
List.fold_right (o) [x1;--- ;2p] e = 100 (z,06€)
3
Q2

use recursion to implement
» for_all

» exists

List.forall p [x1; -+ 52,] = po1 && -+ && p x,
List.exists p [x1;- - j20] = par || - || pan

Q3 Stack Problem of Recursion

let rec sum n =
if n = 0 then 0 else n + sum (n - 1)

se fold_left or fold_right to implement # sum 100000;;
. - -8 P Stack overflow during evaluation (looping recursion?).
» for_all
> exists recursion may cause stack overflow. why?
List.forall p [x1;--- ;2] = pa1 && -+ && p x, stack register
List.exists p [x1;--;2n] = pai || -+ || p zn sum 3
= 3+ sum 2

=34+ (2+ sum 3)
=3+ (24 (14sum 0))

Tail Recursion

» | tail call | is outermost function call in expression
» tail recursion consumes no stack

let rec sum n =
if n = 0 then 0 else ‘n + sum (n - 1)‘

| tail recursive version of sum

TaiI Recursion let rec sumaux m n =
if n = 0 then m else ‘sum,aux (m + n) (n - 1)‘
let sum’ n = sum_aux O n

register
sum 3
= sum_aux

0
= sum_aux 3
= sum_aux 9

6

S = NW

= sum_aux

=6

Naive Version of Reversing

(@)] ys =ys
(@) (z 2 2s) ys = z == (z5Qys)
rev || =]
rev (x :: zs) = rev zsQ[z]
rev [1;2; 3]
rev [2;3] @ [1] = 3= (] @[2])) @[1]
= (rev [3] @ [2]) @ [1] = [3;2]@ [1]
((rev [] @ [3]) @ [2]) @ [1] =3 ([2)@ [1])
([J @ 3]) @[2]) @ [1] =32 ([a[1])
([3] @[2]) @ [1] =32 (1]

Tail-recursive Version of Reversing

rev_append [| list = list
rev_append (z :: xs) list = rev_append zs (x :: list)
rev list = rev_append list |]
rev [1;2; 3]

= rev_append [1;2; 3] I

= rev_append [2;3] 1]

= rev_append 3] [2;1]

= rev_append [[3;2;1]

=(3;2; 1]

10

| THEOREM |

> base case zs = [|

length ([]Qys) = length ys def of @

» inductive step zs = x :: xs

Induction and Recursion

11

Induction on lists

length (zs@Qys) = length xs + length ys

by induction on xs

= length [] + length ys def of length

/

z :: xs')Qys) = length (z :: (zs'Qys)) def of @
=1+ length (zs'Qys) def of length
=1+ length zs’ + length ys [.H.

= length (x :: zs") + length ys def of length

12

Mirroring Property: List
THEOREM

i

rev (rev) =1
PROOF | by induction on !
> base case [=[]

rev (rev []) = rev [] def of rev
=] def of rev

» inductive step [= = :: ws

rev (rev (z :: zs)) = rev (rev zs Q [z]) def of rev
=z ::rev (rev xs) lemma
=x:xs I.H.

LEMMA | rev (ysQz]) =z :rev ys

13

Mirroring

type ’a tree = Empty | Node of ’a tree * ’a * ’a tree

let rec mirror = function
| Empty -> Empty
| Node (1, x, r) -> Node (mirror r, x, mirror 1)

mirror ¥\ = ¥\

14

Mirroring Property: Trees

| THEOREM |

mirror (mirror t) =t
 PROOF | by induction on ¢

» base case t = Empty

mirror (mirror Empty) = mirror Empty

= Empty
» inductive step t = Node (I, xz,r)
mirror (mirror (Node (I, z,7))
= mirror (Node (mirror r,z, mirror [))

= Node (mirror (mirror 1), x, mirror (mirror r))
= Node (I, z,r)

15

N-Queens Problem

16

def of mirror

def of mirror

def of mirror
I.H. (twice)

N-Queens Problem: Generate and Test

012 3 4 56 7

Q

Q

w O U A W N R O
O

let safe ((x1, y1) as ql) ((x2, y2) as q2) =
(x1 <> x2 & x1 + y1 <> x2 + y2 &
yl <> y2 & x1 - y1 <> x2 -y2) ||
ql = q2

let ok gs = List.for_all (fun ql -> (List.for_all (safe ql) gs)) gs

17

N-Queens Problem: Generate and Test

permutation (range 0 7);;
- : int list list =

[[0; 1; 2; 3; 4; 5; 6; 71; [1; 0; 2; 3; 4; 5; 6; 71;
[1; 2; 0; 3; 4; 5; 6; 71; [1; 2; 3; 0; 4; 5; 6; 71; .. 1]
List.combine (range 0 7) [4;1;5;0;6;3;7;2];;

- : (int * int) list =
[0, 4); (1, 1); (2, 5); (3, 0); (4, 6); (5, 3); (6, T); (7, 2)]

let solve n =
let 1 = range 0 (n - 1) in
List.find ok (List.map (List.combine 1) (permutation 1))

18

