
Introduction to Functional Programming

http://cl-informatik.uibk.ac.at/teaching/ws05/idp/

Nao Hirokawa

office hours: Fridays 15:00 – 17:00 (3M09)

nao.hirokawa@uibk.ac.at

1

Purpose

PURPOSE

I unlearn imperative programming

I learn functional programming

I learn theories: λ and type system

2

Schedule

SCHEDULE

w date topic

7 November 25 introduction
8 December 2 higher-order functions, lists, trees
9 December 9 graphs, combinatorics

10 December 16 program reasoning
11 January 13 λ and interpreter
12 January 20 type system
13 January 27 exam part 2

EVALUATION

I [10 × 5 points] homework weeks 7,8,9,10,11

I [50 points] exam

3

Hello World

EXAMPLE

$ cat > hello.ml
print string "hello world\n"

I run on interpreter

$ ocaml hello.ml

I byte-compile

$ ocamlc hello.ml
$./a.out

I native-compile

$ ocamlopt hello.ml
$./a.out

4

tuareg-mode (OCaml mode for Emacs)

I C-M-x or C-x C-e evaluates expression

I press enter

5

Functions

I function is declared by let

let square x = x * x;;
val square : int -> int = <fun>

square 10;;
- : int = 100

let hello s = Printf.printf "Hello, %s\n" s;;
val hello : string -> unit = <fun>

hello "world";;
Hello, world
- : unit = ()

6

Recursive Functions

I recursive function is declared by let rec

EXAMPLE

n! =

{
1 if n = 0
n · (n− 1)! otherwise

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>

factorial 10;;
- : int = 3628800

let rec factorial = function
| 0 -> 1
| n -> n * factorial (n - 1);;

7

Computational Model

I program is expression
I execution is rewriting

EXAMPLE

let rec factorial = function
| 0 -> 1
| n -> n * factorial (n - 1);;

factorial 3;;
- : int = 6

factorial 3
→ 3 ∗ factorial 2
→ 3 ∗ 2 ∗ factorial 1
→ 3 ∗ 2 ∗ 1 ∗ factorial 0
→ 3 ∗ 2 ∗ 1 ∗ 1
→ · · ·
→ 6

8

Trace

EXAMPLE

factorial 40;;
- : int = 0 !?
#trace factorial;;
factorial is now traced.
factorial 2;;
factorial <-- 2
factorial <-- 1
factorial <-- 0
factorial --> 1
factorial --> 1
factorial --> 2
- : int = 2
factorial 40;;

9

Lists

I list is of the form x1 :: · · · :: xn :: [], or [x1; · · · ;xn]
I x1, . . . , xn must have same type

[1; 2; 3];;
- : int list = [1; 2; 3]
1 :: 2 :: 3 :: [];;
- : int list = [1; 2; 3]
[1] :: [[2; 3]];;
- : int list = [[1]; [2; 3]]
["abc"; "def"];;
- : string list = ["abc"; "def"]
[1; 2; "abc"];;
This expression has type string but is here used with type int

10

Length

length ([]) =0
length (3 :: []) =1
length (2 :: 3 :: []) =2
length (1 :: 2 :: 3 :: [])=3

let rec length = function
| [] ->
| x :: xs ->

11

Append

[] @ 3 :: 4 :: [] = 3 :: 4 :: []
2 :: [] @ 3 :: 4 :: [] = 2 :: 3 :: 4 :: []

1 :: 2 :: [] @ 3 :: 4 :: [] = 1 :: 2 :: 3 :: 4 :: []

let rec (@) xs ys =
match xs with
| [] ->
| x :: xs’ ->

12

