Exercises January 18,19, 2006

Exercises.

- 10.0 Study Chapter 5.9, 6.1-6.4
- 10.1 Exercise 5.9.2
- 10.2 Exercise 6.1.1
- 10.3 Exercise 6.2.1

Optional Exercises.

- 1. Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a finite directed graph. We write $\operatorname{path}(v, w)$ to indicate that there exists a path from v to w in \mathbf{G} . Then no first-order formulas X(x, y) can exists, such that X(x, y) is true in \mathbf{G} for some assignment \mathbf{A} iff $\operatorname{path}(x^{\mathbf{A}}, y^{\mathbf{A}})$ holds. I.e. reachability is not first-order definable.
- 2. Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be defined as above. There exists a second-order formula path(P), expressing that P is path in \mathbf{G} .