Exercises.

10.0 Study Chapter 5.9, 6.1-6.4
10.1 Exercise 5.9.2
10.2 Exercise 6.1.1
10.3 Exercise 6.2.1

Optional Exercises.

1. Let $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ be a finite directed graph. We write $\operatorname{path}(v, w)$ to indicate that there exists a path from v to w in \mathbf{G}. Then no first-order formulas $X(x, y)$ can exists, such that $X(x, y)$ is true in \mathbf{G} for some assignment \mathbf{A} iff $\operatorname{path}\left(x^{\mathbf{A}}, y^{\mathbf{A}}\right)$ holds. I.e. reachability is not first-order definable.
2. Let $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ be defined as above. There exists a second-order formula $\operatorname{path}(P)$, expressing that P is path in \mathbf{G}.
