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Exercises.

10.0 Study Chapter 5.9, 6.1–6.4

10.1 Exercise 5.9.2

Solution. The idea of the proof is to use the Compactness Theorem 5.9.1. We start
by representing an arbitrary but fixed graph G = (V,E) as a first-order formula.
Define L = L(R,F,C) by setting

R := {E, eq, R,G, B, Y } E, eq binary, R,G,B, Y unary
F := ∅
C := {cv | v ∈ V}

Furthermore we define the set of formulas S, s.t. S includes

(∀x) x eq x (1)
(∀x, y) x eq y → y eq x (2)
(∀x, y, z) x eq y ∧ y eq z → x eq z , (3)

and

E(cv, cw) for all (v, w) ∈ E (4)
(∀x) ¬E(x, x) ∧ (∀x, y) E(x, y) → E(y, x) , (5)

and

¬(cv eq cw) for all v, w ∈ V (6)

Here the formulas (1)–(3) express that the binary relation eq is an equivalence
relation, the formulas (4)–(5) express the edges in G and (6) guarantees that
different constants cv, cw are interpreted by different vertices v, w ∈ V. Obviously
G can be extended to a model of L (by interpreting eq as the identity) and satisfies
S. Moreover it is not hard to argue that any model M of S is a graph that has
the same structure as G.1

1More precisely M is isomorph to G.
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To conclude the construction we extend S by the formula X:

(∀x)(R(x) ∨G(x) ∨B(x) ∨ Y (x)) ∧ (∀x, y)(E(x, y) → ((R(x) → ¬R(y)) ∧
∧ (G(x) → ¬G(y)) ∧ (B(x) → ¬B(y)) ∧ (Y (x) → ¬Y (y)))) .

Clearly S ∪ {X} is satisfiable iff G is four colorable. Moreover, let S′ denote the
finite set S′ = S0∪{X} ⊆ S∪{X}. Then S′ is satisfiable iff a finite subgraph of G
is four colorable. By assumption this implies that all S′ are satisfiable. In a similar
way, we see that all finite subsets S′ of S ∪{X} are satisfiable. Hence by Theorem
5.9.1 S ∪ {X} is satisfiable. Which in turn implies that G is four colorable.

This completes the proof that if any finite subgraph of G is four colorable, then G
is four colorable.

10.2 Exercise 6.1.1

10.3 Exercise 6.2.1

Optional Exercises.

1. Let G = (V,E) be a finite directed graph. We write path(v, w) to indicate that
there exists a path from v to w in G. Then no first-order formulas X(x, y) can
exists, such that X(x, y) is true in G for some assignment A iff path(xA, yA) holds.
I.e. reachability is not first-order definable.

2. Let G = (V,E) be defined as above. There exists a second-order formula path(P ),
expressing that P is path in G.
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