Exercises.

2.0 Review your studies on induction on numbers (high school textbooks, Formale Methoden I \& II) and Theorem 2.2.3 \& 2.2.4 in the book on p. 11-12.
2.1 Show $R \cup(S \cap T)=(R \cup S) \cap(R \cup T)$ formally. (The review of the definitions of union and intersection are part of the exercise.)

Solution

$$
\begin{aligned}
R \cup(S \cap T) & =\{x \mid x \in R \text { or } x \in(S \cap T)\}= \\
& =\{x \mid x \in R \text { or }(x \in S \text { and } x \in T)\} \\
& =\{x \mid(x \in R \text { or } x \in S) \text { and }(x \in R \text { or } x \in T)\} \\
& =(R \cup S) \cap(R \cup T) .
\end{aligned}
$$

2.2 Show by induction on n :

$$
\text { for all } n \geq 4: n^{2} \geq 2 n+1
$$

2.3 Show by induction on n :

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

2.4 Show by structural induction: Each expression (as defined in the lecture) contains exactly as many left as right brackets.

Solution.

BASE: If the expression is a number or a letter, then the assertion holds trivially.
Step: We consider an expression E.
induction hypothesis (IH): The assertion holds for all proper subexpressions of E.
Case-distinction:
a) Case: E has the form $E_{1}+E_{2}$, where IH holds for E_{1} and E_{2}. Thus by IH the number of left and right brackets is equal for E_{1} and E_{2}. Hence the same holds for E.
b) Case: E has the form $E_{1} \cdot E_{2}$; as in case a).
c) Case: E has the form $\left(E_{1}\right)$, where IH holds for E_{1}. Thus by IH the number of left and right brackets is equal for E_{1}. Suppose n is the number of left (or right) brackets in E_{1}. Hence
number of left brackets in $\left(E_{1}\right)=n+1=$ number of right brackets in $\left(E_{1}\right)$.
2.5 Show the missing base cases and step-cases in the mutual induction proof in the lecture.

Solution. Since induction on natural numbers is applied one has to show that both statements hold for n equals 0 (base case) and under the assumption that both statements hold for n they also hold for $\mathrm{n}+1$ (step case).
The former reduces to the statements "The automaton is off after 0 steps iff 0 is even." and "The automaton is on after 0 steps iff 0 is odd." which both evaluate to true since both sides of the equivalences are true or false respectively. The latter requires to show "The automaton is off after $\mathrm{n}+1$ steps iff $\mathrm{n}+1$ is even." and "The automaton is on after $\mathrm{n}+1$ steps iff $\mathrm{n}+1$ is odd." where one may assume "The automaton is off after n steps iff n is even." and "The automaton is on after n steps iff n is odd.". Since the automaton is off after $\mathrm{n}+1$ steps if and only if it is on after n steps (according to its description) which is if and only if n is odd (by assumption) which again is if and only if $n+1$ is even (trivial) the first statement holds, the prove of the second statement goes analogously.

Optional Exercises.

1. Exercise 2.2.1
2. Exercise 2.2.2
3. Exercise 2.2.3
