Exercises.

4.1 Exercise 2.4.1

Solution. We show something slightly stronger: Let f denote a partial mapping from the set of propositional letters to Tr. Then we claim the existence of a Boolean valuation v, such that $v(P)=f(P)$ for all propositional letters P in the domain of f.

Define a function $v: \mathbf{P} \rightarrow \mathbf{T r}$ by structural recursion:

- Base: Set

$$
\begin{aligned}
& v(\top):=\mathbf{t} \quad v(\perp):=\mathbf{f} \\
& v(P):= \begin{cases}f(P) & P \text { is in the domain of } f \\
\mathbf{f} & \text { otherwise }\end{cases}
\end{aligned}
$$

- Step: Set

$$
\begin{aligned}
& v(\neg X):=\neg v(X) \\
& v(X \circ Y):=v(X) \circ v(Y)
\end{aligned}
$$

By the Principle of Structural Recursion (Thm. 2.2.4) the function v is unique. By definition of v we have:

$$
v(P)=f(P) \quad P \text { is in the domain of } f
$$

Finally by definition of a Boolean valuation (Def. 2.4.1) v is a Boolean valuation. Hence the claim follows.

4.2 Exercise 2.4.2

Solution. Let $v_{1}: \mathbf{P} \rightarrow \mathbf{T r}, v_{2}: \mathbf{P} \rightarrow \mathbf{T r}$ denote two different Boolean valuations such that for all propositional letters $P \in S$:

$$
v_{1}(P)=v_{2}(P)
$$

We claim:

$$
\begin{array}{ll}
v_{1}(X)=v_{2}(X) & \text { for all propositional formulas } X \text { such } \\
& \text { that } X \text { contains only propositional let- } \\
& \text { ters in } S .
\end{array}
$$

We show the claim by structural induction on X. We use the format of structural induction as expressed in Thm. 2.6.3.

- BASE: We have to show the property (\star) for every atomic formula and its negation.
Suppose X is a propositional letter P. By assumption X contains only propositional letters from S, hence $P \in S$. Thus $v_{1}(X)=v_{2}(X)$ follows from (\dagger). Now consider the case where $X=\neg P$. Thus

$$
v_{1}(X)=v_{1}(\neg P)=\neg v_{1}(P)=\neg v_{2}(P)=v_{2}(\neg P)=v_{2}(X),
$$

follows by one application of (\dagger).
Finally consider the case where X is propositional constant or its negation. Then the claim is trivially true.

- Step: We have to consider the cases (i) $X=\neg \neg X_{1}$, (ii) X an α-formula and (iii) X a β-formula. By induction hypothesis (IH) property (\star) holds for X_{1}, $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$.
Case (i): Then

$$
v_{1}(X)=v_{1}\left(\neg \neg X_{1}\right)=\neg \neg v_{1}\left(X_{1}\right)=\neg \neg v_{2}\left(X_{1}\right)=v_{2}\left(\neg \neg X_{1}\right)=v_{2}(X),
$$

follows by definition of a Boolean valuation and IH.
Case (ii): Thus

$$
\begin{aligned}
v_{1}(\alpha) & =v_{1}\left(\alpha_{1}\right) \wedge v_{1}\left(\alpha_{2}\right) & & \text { Proposition 2.6.1 } \\
& =v_{2}\left(\alpha_{1}\right) \wedge v_{2}\left(\alpha_{2}\right) & & \mathrm{IH} \\
& v_{2}(\alpha) . & &
\end{aligned}
$$

CASE (iii): Similar to case (ii).

4.3 Exercise 2.4.4

Solution. We only show Exercise 2.4.4.1, the two other cases are similar:
4.3.1 The following sequence of equivalences follows by the definition of the Boolean valuation v and the definition of mapping $\equiv: \operatorname{Tr} \rightarrow \mathrm{Tr}$:

$$
v(X \equiv Y)=\mathbf{t} \Longleftrightarrow(v(X) \equiv v(Y))=\mathbf{t} \Longleftrightarrow v(X)=v(Y)
$$

Optional Exercises.

1. Exercise 2.2.7
2. Exercise 2.2.8
3. Exercise 2.4.3
4. Exercise 2.4.5
