Exercises November 23, 2005

Exercises.

- 5.0 Study Chapter 3.1-3.4
- 5.1 Exercise 3.1.1
- 5.2 Exercise 3.3.1
- 5.3 Exercise 3.4.2

Solution. Let \mathbf{R} denote a satisfiable resolution expansion. Let \mathbf{R}^* denote the resolution expansion resulting from an application of a resolution expansion rule or the resolution rule to \mathbf{R} . We have to show that \mathbf{R}^* is satisfiable.

We do a case-analysis depending on whether a resolution expansion rule or the resolution rule has been applied to \mathbf{R} .

CASE: A resolution expansion rule has been applied to a disjunction D in the resolution expansion \mathbf{R} . Let X denote the non-literal, the expansion rule was applied to. We only consider the subcase, where $X = \alpha$. We write $[\alpha, X_1, \ldots, X_n]$ for D to indicate the occurrence of α . By definition \mathbf{R}^* is extended by the disjunctions $[\alpha_1, X_1, \ldots, X_n]$ and $[\alpha_2, X_1, \ldots, X_n]$.

By assumption there exists a Boolean valuation v, such that $v([\alpha, X_1, \ldots, X_n]) = \mathbf{t}$. W.l.o.g we assume that $v(\alpha) = \mathbf{t}$. Hence, by Prop. 2.6.1 $v(\alpha_1) = v(\alpha_2) = \mathbf{t}$ and thus $v([\alpha_1, X_1, \ldots, X_n]) = v([\alpha_2, X_1, \ldots, X_n]) = \mathbf{t}$. It follows that \mathbf{R}^* is satisfiable. CASE: The resolution rule has been applied to two disjunctions D_1 and D_2 in \mathbf{R} . To simplify notation, we assume (w.l.o.g.) that $D_1 = [X, X_1, \ldots, X_n]$ and $D_2 = [\neg X, X_1, \ldots, X_n]$. By assumption $v(D_1) = v(D_2) = \mathbf{t}$. The resolvent of D_1 and D_2 has the form $[X_1, \ldots, X_n, X_1, \ldots, X_n]$. As $v(X) \neq v(\neg X)$ for at least one $i, v(X_i) = \mathbf{t}$. It follows that $v([X_1, \ldots, X_n, X_1, \ldots, X_n]) = \mathbf{t}$ and hence \mathbf{R}^* is satisfiable.

5.4 Exercise 3.4.3

Solution. We prove the claim, by assuming the existence of a closed resolution expansion \mathbf{R} for satisfiable S. As \mathbf{R} is a resolution expansion of S it is obtained from the initial resolution expansion of S by a sequence of resolution expansion or resolution rules. By Exercise 5.3, \mathbf{R} is thus satisfiable. But this is a contradiction to the fact that \mathbf{R} contains the empty clause.

5.5 Exercise 3.4.4

Solution. A resolution proof of X is closed resolution expansion for $\{\neg X\}$. By Exercise 5.4, $\{\neg X\}$ is not satisfiable. Hence for all Boolean valuations $v, v(X) = \mathbf{t}$ holds. Therefore X is a tautology.

Optional Exercises.

- 1. Exercise 3.1.2
- 2. Exercise 3.2.1
- 3. Exercise 3.2.2
- 4. Exercise 3.3.3