Exercises.

- 6.0 Study Chapter 3.5–3.9
- 6.1 Exercise 3.6.1

Solution. To show the claim, we follow the hint. Let \mathcal{C} be a propositional consistency property; let \mathcal{C}^+ consist of all subsets of members of \mathcal{C} . Cleary \mathcal{C}^+ extends \mathcal{C} and it is easy to see that it is subset closed. We show that \mathcal{C}^+ is a consistency property by checking the 5 conditions. Let $S \in \mathcal{C}^+$.

CASE For any propositional letter A, not both $A \in S$ and $\neg A \in S$: Suppose $\{A, \neg A\} \subseteq S$. By definition S is a subset of a set $S' \in C$. Hence $\{A, \neg\} \subseteq S'$, which shows that C is not a propositional consistency property. Contradiction to the assumption that both $A \in S$ and $\neg A \in S$.

CASE $\perp \notin S$, $\neg \top \notin S$: Similar to case 1.

CASE $\neg \neg Z \in S$ implies $S \cup \{Z\} \in \mathcal{C}^+$: Reasoning as in case 1), we conclude the existence of a set $S' \in \mathcal{C}$, such that $S' \cup \{Z\} \in \mathcal{C}$. As \mathcal{C}^+ consist of all subsets of members of $\mathcal{C}, S \cup \{Z\} \in \mathcal{C}^+$, too.

CASE $\alpha \in S$ implies $S \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}^+$: As in case 3).

CASE $\beta \in S$ implies $S \cup \{\beta_1\} \in \mathcal{C}^+$ or $S \cup \{\beta_2\} \in \mathcal{C}^+$: As in case 3).

6.2 Exercise 3.6.2

Solution. Let \mathcal{C} denote a propositional consistency property of finite character. We have to show that, if $S \in \mathcal{C}$ and $S' \subseteq S$, then $S' \in \mathcal{C}$. We fix S and S'.

Assume S' is finite, then $S' \in C$ follows by the assumption that C is of finite character. Assume otherwise that S' is infinite. To show $S' \in C$, we show that for every finite $S_0 \subseteq S'$, $S_0 \in C$. Then $S' \in C$ follows by definition of finite character. To show $S_0 \subseteq S'$ for any finite subset S_0 of S', it suffices to realise that any such subset S_0 is also a (finite) subset of S, hence $S_0 \in C$, by the assumption that

 $S \in \mathcal{C}.$

6.3 Exercise 3.6.3

Solution. To show the claim, we follow the hint. Let \mathcal{C} be a propositional consistency property that is subset closed; let \mathcal{C}^* consist of those sets, all of whose finite subsets are in \mathcal{C} . Cleary \mathcal{C}^* extends \mathcal{C} and \mathcal{C}^* is of finite character. We show that \mathcal{C}^* is a consistency property by checking the 5 conditions. Let $S \in \mathcal{C}^*$. We only consider two interesting cases.

CASE For any propositional letter A, not both $A \in S$ and $\neg A \in S$: Suppose $\{A, \neg A\} \subseteq S$. By assumption $S \in C^*$, hence any finite subset of S is a member of C. In particular $\{A, \neg A\} \in C$, which contradicts the assumption that C is a propositional consistency property.

CASE $\alpha \in S$ implies $S \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}^*$: We show that for any finite $S_0 \subseteq S$, $S_0 \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$. Note that $S_0 \in \mathcal{C}$ by definition of \mathcal{C}^* .

We consider the following subcases (i) $\alpha \in S_0$ and (ii) $\alpha \notin S_0$. In subcase (i), we immediately get $S_0 \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$ by the assumption that \mathcal{C} is a consistency property. Now consider subcase (ii). As S_0 is finite, $S_0 \cup \{\alpha\}$ is finite, too and $S_0 \cup \{\alpha\} \subseteq S$ by assumption. Hence $S_0 \cup \{\alpha\} \in \mathcal{C}^*$ as \mathcal{C}^* is subset closed. Thus $S_0 \cup \{\alpha\} \in \mathcal{C}$ by definition of \mathcal{C}^* . Hence $S_0 \cup \{\alpha, \alpha_1, \alpha_2\} \in \mathcal{C}$. Finally we apply the assumption that \mathcal{C} is subset closed to conclude that $S_0 \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$.

6.4 Exercise 3.6.6

Optional Exercises.

- 1. We call a set M countable if it is not finite and if there is a surjective map of the natural numbers \mathbb{N} onto M. Show that, if the list of propositional letters is countable, the entire set of propositional formulas is countable as well.
- 2. Exercise 3.6.4
- 3. Exercise 3.6.5
- 4. Exercise 3.8.1
- 5. Exercise 3.8.2