Exercises.

- 7.0 Study Chapter 5.1–5.3
- 7.1 Exercise 5.1.1
- 7.2 Suppose $\mathbf{M} = (\mathbf{D}, \mathbf{I})$ is a model for \mathbf{L} , \mathbf{A} an assignment in \mathbf{M} , σ is a substitution. Define \mathbf{B} by setting for each variable $v^{\mathbf{B}} = (v\sigma)^{\mathbf{I},\mathbf{A}}$. Then $t^{\mathbf{I},\mathbf{B}} = (t\sigma)^{\mathbf{I},\mathbf{A}}$ for any term t.

Solution. We prove the claim by induction on t.

BASE: t is constant $c \in \mathbf{C}$. Then $c^{\mathbf{I},\mathbf{B}} = c^{\mathbf{I}} = (c\sigma)^{\mathbf{I}} = (c\sigma)^{\mathbf{I},\mathbf{A}}$ follows easily. Now assume t is a variable $x \in \mathbf{V}$. Then $x^{\mathbf{I},\mathbf{B}} = x^{\mathbf{B}} = (x\sigma)^{\mathbf{I},\mathbf{A}}$.

STEP: t is a complex term $f(t_1, \ldots, t_n)$. Then

$$[f(t_1, \dots, t_n)]^{\mathbf{I}, B} = f^{\mathbf{I}}(t_1^{\mathbf{I}, B}, \dots, t_n^{\mathbf{I}, B}) \qquad \text{definition of value}$$
$$= f^{\mathbf{I}}((t_1\sigma)^{\mathbf{I}, A}, \dots, (t_n\sigma)^{\mathbf{I}, A}) \qquad \text{IH}$$
$$= [f(t_1\sigma, \dots, t_n\sigma)]^{\mathbf{I}, A} \qquad \text{definition of substitution}$$

7.3 Exercise 5.3.1

Solution. We prove the (stronger) proposition: $[X\{x \mapsto t\}]^{\mathbf{I},\mathbf{B}} = X^{\mathbf{I},\mathbf{A}}$ for some x-variant **B** of **A** by induction on X. As preparation, we prove the following claim. We set $\sigma = \{x \mapsto t\}$.

Claim. For all terms s, $(s\sigma)^{I,B} = s^{I,A}$.

Proof of the Claim. BASE: s is constant $c \in \mathbf{C}$. Then $(c\sigma)^{\mathbf{I},\mathbf{B}} = c^{\mathbf{I},B} = c^{\mathbf{I}} = c^{\mathbf{I},\mathbf{A}}$ holds. Now assume s is a variable $y \in \mathbf{V}$. We assume y = x, otherwise the claim follows as **B** is an x-variant of **A**. Then $(x\sigma)^{\mathbf{I},\mathbf{B}} = t^{\mathbf{I},\mathbf{B}} = t^{\mathbf{I}} = t^{\mathbf{I},\mathbf{A}}$ holds. The last equality holds, as t is closed.

STEP: s is a complex term $f(s_1, \ldots, s_n)$. Then

$$[f(s_1, \dots, s_n)\sigma]^{\mathbf{I},B} = f^{\mathbf{I}}((s_1\sigma)^{\mathbf{I},B}, \dots, (s_n\sigma)^{\mathbf{I},B})$$
$$= f^{\mathbf{I}}(s_1^{\mathbf{I},A}, \dots, s_n^{\mathbf{I},A})$$
$$= [f(s_1, \dots, s_n)]^{\mathbf{I},A}$$
IH

This establishes the claim.

We proceed with the proof of the proposition.

BASE: Suppose X is atomic, s.t. $X = P(s_1, \ldots, s_n)$. By the previous exercise we have $(s\sigma)^{\mathbf{I},B} = s^{\mathbf{I},\mathbf{A}}$ for any term s.

Then

$$[P(s_1, \dots, s_n)\sigma]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$$

iff $[P(s_1\sigma, \dots, s_n\sigma)]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$
iff $((s_1\sigma)^{\mathbf{I},\mathbf{B}}, \dots, (s_n\sigma)^{\mathbf{I},\mathbf{B}}) \in P^{\mathbf{I}}$
iff $(s_1^{\mathbf{I},\mathbf{A}}, \dots, s_n^{\mathbf{I},\mathbf{A}}) \in P^{\mathbf{I}}$
iff $[P(s_1, \dots, s_n)]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$

STEP: We only consider the case where $X = (\exists y)X_1$. W.l.o.g. we assume $y \neq x$. First we show that $[((\exists y)X_1)\sigma]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ implies that $[[(\exists y)X_1]^{\mathbf{I},\mathbf{A}} = \mathbf{t}.$

> $[((\exists y)X_1)\sigma]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ implies $[(\exists y)(X_1\sigma_y)]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ implies $[(\exists y)(X_1\sigma)]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ implies $[(X_1\sigma)]^{\mathbf{I},\mathbf{B}'} = \mathbf{t}$ for some y-variant \mathbf{B}' of \mathbf{B} implies $[X_1]^{\mathbf{I},\mathbf{A}'} = \mathbf{t}$ for some y-variant \mathbf{A}' of \mathbf{A} implies $[(\exists y)X_1]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$

Note that by III the proposition holds for any subexpression of X, in particular it holds for X_1 . I.e. for any assignment \mathbf{A} , such that $x^{\mathbf{A}} = t^I$ and \mathbf{B} an *x*-variant of \mathbf{A} , we have $[(X_1\sigma)]^{\mathbf{I},\mathbf{B}} = [X_1]^{\mathbf{I},\mathbf{A}}$. Hence, if we set \mathbf{A}' exactly as \mathbf{A} expect that $y^{\mathbf{A}'} := y^{\mathbf{B}'}$, then $x^{\mathbf{A}'} = t^{\mathbf{I}}$ (as $y \neq x$) and \mathbf{B}' is an *x*-variant of \mathbf{A}' . Hence III is applicable in line 5 above. Furthermore \mathbf{A}' is a *y*-variant of \mathbf{A} .

The direction $[[(\exists y)X_1]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ implies $[((\exists x)X_1)\sigma]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ follows similarly. \Box

- 7.4 Exercise 5.3.2
- 7.5 Exercise 5.3.6

Optional Exercises.

- 1. Exercise 5.3.4
- 2. Exercise 5.3.5