Exercises.

7.0 Study Chapter 5.1-5.3

7.1 Exercise 5.1.1

7.2 Suppose $\mathbf{M}=(\mathbf{D}, \mathbf{I})$ is a model for \mathbf{L}, \mathbf{A} an assignment in \mathbf{M}, σ is a substitution. Define \mathbf{B} by setting for each variable $v^{\mathbf{B}}=(v \sigma)^{\mathbf{I}, \mathbf{A}}$. Then $t^{\mathbf{I}, \mathbf{B}}=(t \sigma)^{\mathbf{I}, \mathbf{A}}$ for any term t.

Solution. We prove the claim by induction on t.
BASE: t is constant $c \in \mathbf{C}$. Then $c^{\mathbf{I}, \mathbf{B}}=c^{\mathbf{I}}=(c \sigma)^{\mathbf{I}}=(c \sigma)^{\mathbf{I}, \mathbf{A}}$ follows easily. Now assume t is a variable $x \in \mathbf{V}$. Then $x^{\mathbf{I}, \mathbf{B}}=x^{\mathbf{B}}=(x \sigma)^{\mathbf{I}, \mathbf{A}}$.
STEP: t is a complex term $f\left(t_{1}, \ldots, t_{n}\right)$. Then

$$
\begin{aligned}
{\left[f\left(t_{1}, \ldots, t_{n}\right)\right]^{\mathbf{I}, B} } & =f^{\mathbf{I}}\left(t_{1}^{\mathbf{I}, B}, \ldots, t_{n}^{\mathbf{I}, B}\right) & & \text { definition of value } \\
& =f^{\mathbf{I}}\left(\left(t_{1} \sigma\right)^{\mathbf{I}, A}, \ldots,\left(t_{n} \sigma\right)^{\mathbf{I}, A}\right) & & \text { IH } \\
& =\left[f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right)\right]^{\mathbf{I}, A} & & \text { definition of substitution }
\end{aligned}
$$

7.3 Exercise 5.3.1

Solution. We prove the (stronger) proposition: $[X\{x \mapsto t\}]^{\mathbf{I}, \mathbf{B}}=X^{\mathbf{I}, \mathbf{A}}$ for some x-variant \mathbf{B} of \mathbf{A} by induction on X. As preparation, we prove the following claim. We set $\sigma=\{x \mapsto t\}$.
Claim. For all terms $s,(s \sigma)^{\mathbf{I}, \mathbf{B}}=s^{\mathbf{I}, \mathbf{A}}$.
Proof of the Claim. BasE: s is constant $c \in \mathbf{C}$. Then $(c \sigma)^{\mathbf{I}, \mathbf{B}}=c^{\mathbf{I}, B}=c^{\mathbf{I}}=c^{\mathbf{I}, \mathbf{A}}$ holds. Now assume s is a variable $y \in \mathbf{V}$. We assume $y=x$, otherwise the claim follows as \mathbf{B} is an x-variant of \mathbf{A}. Then $(x \sigma)^{\mathbf{I}, \mathbf{B}}=t^{\mathbf{I}, \mathbf{B}}=t^{\mathbf{I}}=t^{\mathbf{I}, \mathbf{A}}$ holds. The last equality holds, as t is closed.
Step: s is a complex term $f\left(s_{1}, \ldots, s_{n}\right)$. Then

$$
\begin{align*}
{\left[f\left(s_{1}, \ldots, s_{n}\right) \sigma\right]^{\mathbf{I}, B} } & =f^{\mathbf{I}}\left(\left(s_{1} \sigma\right)^{\mathbf{I}, B}, \ldots,\left(s_{n} \sigma\right)^{\mathbf{I}, B}\right) \\
& =f^{\mathbf{I}}\left(s_{1}^{\mathbf{I}, A}, \ldots, s_{n}^{\mathbf{I}, A}\right) \tag{IH}\\
& =\left[f\left(s_{1}, \ldots, s_{n}\right)\right]^{\mathbf{I}, A}
\end{align*}
$$

This establishes the claim.

We proceed with the proof of the proposition.
Base: Suppose X is atomic, s.t. $X=P\left(s_{1}, \ldots, s_{n}\right)$. By the previous exercise we have $(s \sigma)^{\mathbf{I}, B}=s^{\mathbf{I}, \mathbf{A}}$ for any term s.
Then

$$
\begin{aligned}
& {\left[P\left(s_{1}, \ldots, s_{n}\right) \sigma\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t}} \\
& \text { iff }\left[P\left(s_{1} \sigma, \ldots, s_{n} \sigma\right)\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t} \\
& \text { iff }\left(\left(s_{1} \sigma\right)^{\mathbf{I}, \mathbf{B}}, \ldots,\left(s_{n} \sigma\right)^{\mathbf{I}, \mathbf{B}}\right) \in P^{\mathbf{I}} \\
& \text { iff }\left(s_{1}^{\mathbf{I}, \mathbf{A}}, \ldots, s_{n}^{\mathbf{I}, \mathbf{A}}\right) \in P^{\mathbf{I}} \\
& \text { iff }\left[P\left(s_{1}, \ldots, s_{n}\right)\right]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}
\end{aligned}
$$

Step: We only consider the case where $X=(\exists y) X_{1}$. W.l.o.g. we assume $y \neq x$. First we show that $\left[\left((\exists y) X_{1}\right) \sigma\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$ implies that $\left[(\exists y) X_{1}\right]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$.

$$
\begin{aligned}
& {\left[\left((\exists y) X_{1}\right) \sigma\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t}} \\
& \text { implies }\left[(\exists y)\left(X_{1} \sigma_{y}\right)\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t} \\
& \text { implies }\left[(\exists y)\left(X_{1} \sigma\right)\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t} \\
& \text { implies }\left[\left(X_{1} \sigma\right)\right]^{\mathbf{I}, \mathbf{B}^{\prime}}=\mathbf{t} \text { for some } y \text {-variant } \mathbf{B}^{\prime} \text { of } \mathbf{B} \\
& \text { implies }\left[X_{1}\right]^{\mathbf{1 , \mathbf { A } ^ { \prime }}}=\mathbf{t} \text { for some } y \text {-variant } \mathbf{A}^{\prime} \text { of } \mathbf{A} \\
& \text { implies }\left[(\exists y) X_{1}\right]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}
\end{aligned}
$$

Note that by IH the proposition holds for any subexpression of X, in particular it holds for X_{1}. I.e. for any assignment \mathbf{A}, such that $x^{\mathbf{A}}=t^{I}$ and \mathbf{B} an x-variant of \mathbf{A}, we have $\left[\left(X_{1} \sigma\right)\right]^{\mathbf{I}, \mathbf{B}}=\left[X_{1}\right]^{\mathbf{I}, \mathbf{A}}$. Hence, if we set \mathbf{A}^{\prime} exactly as \mathbf{A} expect that $y^{\mathbf{A}^{\prime}}:=y^{\mathbf{B}^{\prime}}$, then $x^{\mathbf{A}^{\prime}}=t^{\mathbf{I}}($ as $y \neq x)$ and \mathbf{B}^{\prime} is an x-variant of \mathbf{A}^{\prime}. Hence IH is applicable in line 5 above. Furthermore \mathbf{A}^{\prime} is a y-variant of \mathbf{A}.
The direction $\left[\left[(\exists y) X_{1}\right]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}\right.$ implies $\left[\left((\exists x) X_{1}\right) \sigma\right]^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$ follows similarily.

7.4 Exercise 5.3.2

7.5 Exercise 5.3.6

Optional Exercises.

1. Exercise 5.3.4
2. Exercise 5.3.5
