Exercises.

8.0 Study Chapter 5.4-5.8

8.1 Exercise 5.5.1

Solution. We only consider the claim for γ-formulas, the reasoning for δ-formulas is analog.
Assume $\gamma=(\forall y) A$. Then we consider the substitutions $\sigma=\{y \mapsto x\}$ and $\tau=$ $\{x \mapsto t\}$. Firstly we argue that σ is free for A. This follows as x does not occur in γ and hence cannot occur in A. Secondly, we observe that τ is free for $A \sigma$. This follows as t is ground. Moreover we note that the composition of σ and τ equals $\{y \mapsto t\}$. In summary we obtain

$$
\gamma(t)=A\{y \mapsto t\}=(A\{y \mapsto x\})\{x \mapsto t\}=\gamma(x)\{x \mapsto t\}
$$

where the second equality follows from Theorem 5.2.13.
The case where $\gamma=\neg(\exists y) A$ is proven in exactly the same way.

8.2 Exercise 5.7.1

Solution. Firstly, we show that the validity of $A\{x \mapsto p\}$ implies the validity of $(\forall x) A$. We have to show that $(\forall x) A$ is true in every model $\mathbf{M}=(\mathbf{D}, \mathbf{I})$. I.e., $[(\forall x) A]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ for every interpretation \mathbf{I} and assignment \mathbf{A}.
Let \mathbf{I}, \mathbf{A} be arbitrary but fixed. We have to show that $A^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$ for every x-variant \mathbf{B} of \mathbf{A}. We fix an arbitrary x-variant \mathbf{B} of \mathbf{A}. If $x^{B}=d \in \mathbf{D}$, then define an interpretation \mathbf{I}^{\prime} such that $p^{\mathbf{I}^{\prime}}=d$. By assumption

$$
[A\{x \mapsto p\}]^{\mathbf{I}^{\prime}, \mathbf{B}}=\mathbf{t}
$$

By Prop. 5.3.7 we conclude that

$$
A^{\mathbf{I}^{\prime}, \mathbf{B}}=\mathbf{t}
$$

As p is a parameter p does not occur in A, hence the latter equations yields that $A^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$, as desired. The interpretation \mathbf{I} and the assignments \mathbf{A}, \mathbf{B} were all arbitrary, hence this is sufficient to show that $(\forall x) A$ is valid.
Secondly, we show that the validity of $(\forall x) A$ implies the validity of $A\{x \mapsto p\}$. We have to show that $A\{x \mapsto p\}$ is true in every model $\mathbf{M}=(\mathbf{D}, \mathbf{I})$.

As above, let \mathbf{I}, A be arbitrary but fixed. We define an x-variant \mathbf{B} of \mathbf{A} by setting $x^{\mathbf{B}}=p^{\mathbf{I}}$ and conclude from the assumption that $A^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$. Now, we observe that the substitution $\sigma:=\{x \mapsto p\}$ is free for A. (Here, we use the fact that p is a constant, i.e., a closed term.)

Thus by Prop. 5.3.8 we conclude that

$$
[A\{x \mapsto p\}]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}
$$

The interpretation \mathbf{I} and the assignments \mathbf{A} were arbitrary, hence this is sufficient to show that $A\{x \mapsto p\}$ is valid.
Remark 1. Note that the assumption that p is a parameter is indeed necessary. Consider e.g. the formula A :

$$
(\forall y) R(y, y) \rightarrow R(p, x) .
$$

Then clearly $A\{x \mapsto p\}$ is valid, while $(\forall x) A$ is not. To see the latter simple choose a model $\mathbf{M}=(\mathbf{D}, \mathbf{I})$ with at least two elements and an assignment \mathbf{A}, such that $x^{\mathbf{A}} \neq p^{\mathbf{I}}$.

Optional Exercises.

1. Exercise 5.4.1
2. Exercise 5.4.2
3. Exercise 5.5.2
4. Exercise 5.6.1
5. Exercise 5.6.3
6. Exercise 5.8.2
7. Exercise 5.8.3
