Exercises.

9.0 Study Chapter 5

9.1 Exercise 5.3.4

Solution. According to Definition 5.3.6 a formula is true in a model provided its interpretation evaluates to true for all assignments. So it has to be shown that $(X \equiv Y)^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ iff $\left(X^{\mathbf{I}, \mathbf{A}}=Y^{\mathbf{I}, \mathbf{A}}\right)$. But this follows from the fact that $\left(X^{\mathbf{I}, \mathbf{A}} \equiv\right.$ $\left.Y^{\mathbf{I}, \mathbf{A}}\right)=\mathbf{t}$ is equivalent as well to the first equation (by Definition 5.3.5) as to the second (by the definition of \equiv).

9.2 Exercise 5.3.5

Solution. First we consider the "if" part: Suppose S is satisfiable in a model for L^{\prime}. Then all formulas in S are true in some model $\mathbf{M}=(\mathbf{B}, \mathbf{I})$ with assignment A. We define a model \mathbf{N} for L by setting $\mathbf{N}=\left(\mathbf{D},\left.\mathbf{I}\right|_{\mathrm{L}}\right)$, where $\left.\mathbf{I}\right|_{\mathrm{L}}$ denotes the restriction of the interpretation \mathbf{I} to the language L . Set $\mathbf{J}=\left.\mathbf{I}\right|_{\mathrm{L}}$. Now it is easy to show by induction that for each $X \in S,[X]^{\mathbf{J}, \mathbf{A}}=\mathbf{t}$. Hence S is satisfiable in a model for L.
Secondly, consider the "only if" part: Suppose S is satisfiable in a model for L. Then all formulas in S are true in some model $\mathbf{M}=(\mathbf{B}, \mathbf{I})$ with assignment \mathbf{A}. We define \mathbf{N} for L^{\prime} by setting $\mathbf{N}=(\mathbf{J}, \mathbf{D})$, where \mathbf{J} is chosen such that $\mathbf{J}_{\mathbf{L}}=\mathbf{I}$. (The symbols in $\mathrm{L}^{\prime}-\mathrm{L}$ can be interpreted arbitrarily.) Then it is again easy to show by induction that for each $X \in S,[X]^{\mathbf{J}, \mathbf{A}}=\mathbf{t}$. Thus S is satisfiable in a model for L^{\prime} 。

9.3 Exercise 5.4.1

Solution. Let X be a formula of L , we have to show that $[X]^{\mathbf{I}, \mathbf{A}}=[X \mathbf{A}]^{\mathbf{I}}$ for all assignments A. To this avail, we exploit Prop. 5.3.7 in its simple form stating that the equality $[X]^{\mathbf{I}, \mathbf{A}}=[X\{x \mapsto \mathbf{A}(x)\}]^{\mathbf{I}, \mathbf{A}}$ holds. As X is finite the number of
variables occurring free in X is finite, too. Suppose $\operatorname{fvar}(X)=\left\{x_{1}, \ldots, x_{n}\right\}$. Then

$$
\begin{array}{lll}
{[X]^{\mathbf{I}, \mathbf{A}}=} & {\left[X\left\{x_{1} \mapsto \mathbf{A}\left(x_{1}\right)\right\}\right]^{\mathbf{I}, \mathbf{A}}} & \text { Prop. 5.3.7 } \\
= & {\left[X\left\{x_{1} \mapsto \mathbf{A}\left(x_{1}\right)\right\}\left\{x_{2} \mapsto \mathbf{A}\left(x_{2}\right)\right\}\right]^{\mathbf{I}, \mathbf{A}}} & \\
& \vdots & \\
= & {\left[X\left\{x_{1} \mapsto \mathbf{A}\left(x_{1}\right)\right\} \cdots\left\{x_{n} \mapsto \mathbf{A}\left(x_{n}\right)\right\}\right]^{\mathbf{I}, \mathbf{A}}} & \\
= & {[X \mathbf{A}]^{\mathbf{I}, \mathbf{A}}} & \\
= & {[X \mathbf{A}]^{\mathbf{I}}} & \text { as } X \mathbf{A} \text { is closed }
\end{array}
$$

Alternatively a direct proof of Proposition 5.4.3 would procced by induction on X as follows:
a) For the atomic cases this follows from Proposition 5.4.2.
b) Case $X=\neg X_{1}$: By induction hypothesis (IH) $X_{1}^{\mathbf{I}, \mathbf{A}}=\left[X_{1} \mathbf{A}\right]^{\mathbf{I}}$ which implies $\neg\left[X_{1}^{\mathbf{I}, \mathbf{A}}\right]=\neg\left[\left[X_{1} \mathbf{A}\right]^{\mathbf{I}}\right]$. The induction step follows as

$$
\left[\neg X_{1}\right]^{\mathbf{I}, \mathbf{A}}=\neg\left[X_{1}^{\mathbf{I}, \mathbf{A}}\right]=\neg\left[\left[X_{1} \mathbf{A}\right]^{\mathbf{I}}\right]=\left[\left[\neg X_{1}\right] \mathbf{A}\right]^{\mathbf{I}} .
$$

c) Case $X=\left(X_{1} \circ X_{2}\right)$: Analogous to b).
d) Case $X=(\forall x) X_{1}$: By IH we know that $\left[X_{1}\right]^{\mathbf{I}, \mathbf{B}}=\left[X_{1} \mathbf{B}\right]^{\mathbf{I}}$. Note that we can conceive the assignment \mathbf{B} as a substitution (of closed terms) and thus obtain the equality: $\mathbf{B}=\left(\mathbf{B}_{x}\right)\{x \mapsto B(x)\}$.
Furthermore IH is applicable to the formula $X \mathbf{B}_{x}$, hence we obtain $\left[X \mathbf{B}_{x}\right]^{\mathbf{I}, \mathbf{C}}=$ $\left[\left(X \mathbf{B}_{x}\right) \mathbf{C}\right]^{\mathbf{I}}$ for any assignment \mathbf{C}. If we assume further that \mathbf{C} is defined such that $\mathbf{C}(x)=\mathbf{B}(x)$, and $\mathbf{C}(y)$ is arbitrary for $x \neq y$, then we obtain $\left[X \mathbf{B}_{x}\right]^{\mathbf{I}, \mathbf{C}}=\left[(X \mathbf{B}]^{\mathbf{I}}\right.$, as $\left(X \mathbf{B}_{x}\right) \mathbf{C}=X \mathbf{B}$.
Now we show that $[(\forall x) X]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ iff $[(\forall x) X \mathbf{A}]^{\mathbf{I}}=\mathbf{t}$:

$$
[(\forall x) X]^{\mathbf{I}, \mathbf{A}}=\mathbf{t} \quad \text { iff } \quad[X]^{\mathbf{I}, \mathbf{B}}=\mathbf{t} \text { for all } x \text {-variants } \mathbf{B} \text { of } \mathbf{A}
$$

iff $[X \mathbf{B}]^{\mathbf{I}}=\mathbf{t}$ for all x-variants \mathbf{B} of \mathbf{A} (by IH)
iff $\left[X \mathbf{B}_{x}\right]^{\mathbf{I}, \mathbf{C}}=\mathbf{t}$ for all assignments \mathbf{C}, s.t. $\mathbf{C}(x)=\mathbf{B}(x)$ and \mathbf{C} arbitrary otherwise and all x-variants \mathbf{B} of \mathbf{A}
iff $\left[(\forall x) X \mathbf{B}_{x}\right]^{\mathbf{I}, \mathbf{D}}=\mathbf{t}$ for all assignments \mathbf{D}
iff $\left[(\forall x) X \mathbf{B}_{x}\right]^{\mathbf{I}}=\mathbf{t}\left((\forall x) X \mathbf{B}_{x}\right.$ is closed $)$
iff $[((\forall x) X) \mathbf{A}]^{\mathbf{I}}=\mathbf{t}$ as \mathbf{B} is an x-variant of \mathbf{A}.
e) Analogous to d).
9.4 Exercise 5.4.2

Solution. We only consider the first case. Suppose $\mathbf{M}=(\mathbf{D}, \mathbf{I})$.
$(\forall x) X$ is true in \mathbf{M} iff $[(\forall x) X]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ for all assignments \mathbf{A}
iff $[X]^{\mathbf{I}, \mathbf{B}}=\mathbf{t}$ for all x-variants \mathbf{B} of \mathbf{A}
iff $[(X\{x \mapsto \mathbf{B}(x)\})]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ for all x-variants \mathbf{B} of \mathbf{A}
as \mathbf{B} is an x-variant of \mathbf{A} by the general statement of Prop. 5.3.7 iff $\quad[(X\{x \mapsto d\})]^{\mathbf{I}, \mathbf{A}}=\mathbf{t}$ for all $d \in \mathbf{D}$.

