Exercises.

- 9.0 Study Chapter 5
- 9.1 Exercise 5.3.4

Solution. According to Definition 5.3.6 a formula is true in a model provided its interpretation evaluates to true for all assignments. So it has to be shown that $(X \equiv Y)^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ iff $(X^{\mathbf{I},\mathbf{A}} = Y^{\mathbf{I},\mathbf{A}})$. But this follows from the fact that $(X^{\mathbf{I},\mathbf{A}} \equiv Y^{\mathbf{I},\mathbf{A}}) = \mathbf{t}$ is equivalent as well to the first equation (by Definition 5.3.5) as to the second (by the definition of \equiv).

9.2 Exercise 5.3.5

Solution. First we consider the "if" part: Suppose S is satisfiable in a model for L'. Then all formulas in S are true in some model $\mathbf{M} = (\mathbf{B}, \mathbf{I})$ with assignment **A**. We define a model **N** for L by setting $\mathbf{N} = (\mathbf{D}, \mathbf{I}|_{\mathsf{L}})$, where $\mathbf{I}|_{\mathsf{L}}$ denotes the restriction of the interpretation **I** to the language L. Set $\mathbf{J} = \mathbf{I}|_{\mathsf{L}}$. Now it is easy to show by induction that for each $X \in S$, $[X]^{\mathbf{J},\mathbf{A}} = \mathbf{t}$. Hence S is satisfiable in a model for L.

Secondly, consider the "only if" part: Suppose S is satisfiable in a model for L . Then all formulas in S are true in some model $\mathbf{M} = (\mathbf{B}, \mathbf{I})$ with assignment \mathbf{A} . We define \mathbf{N} for L' by setting $\mathbf{N} = (\mathbf{J}, \mathbf{D})$, where \mathbf{J} is chosen such that $\mathbf{J}_{\mathsf{L}} = \mathbf{I}$. (The symbols in $\mathsf{L}' - \mathsf{L}$ can be interpreted arbitrarily.) Then it is again easy to show by induction that for each $X \in S$, $[X]^{\mathbf{J},\mathbf{A}} = \mathbf{t}$. Thus S is satisfiable in a model for L' .

9.3 Exercise 5.4.1

Solution. Let X be a formula of L, we have to show that $[X]^{\mathbf{I},\mathbf{A}} = [X\mathbf{A}]^{\mathbf{I}}$ for all assignments **A**. To this avail, we exploit Prop. 5.3.7 in its simple form stating that the equality $[X]^{\mathbf{I},\mathbf{A}} = [X\{x \mapsto \mathbf{A}(x)\}]^{\mathbf{I},\mathbf{A}}$ holds. As X is finite the number of

variables occurring free in X is finite, too. Suppose $fvar(X) = \{x_1, \ldots, x_n\}$. Then

$$[X]^{\mathbf{I},\mathbf{A}} = [X\{x_1 \mapsto \mathbf{A}(x_1)\}]^{\mathbf{I},\mathbf{A}}$$
Prop. 5.3.7

$$= [X\{x_1 \mapsto \mathbf{A}(x_1)\}\{x_2 \mapsto \mathbf{A}(x_2)\}]^{\mathbf{I},\mathbf{A}}$$

$$\vdots$$

$$= [X\{x_1 \mapsto \mathbf{A}(x_1)\} \cdots \{x_n \mapsto \mathbf{A}(x_n)\}]^{\mathbf{I},\mathbf{A}}$$

$$= [X\mathbf{A}]^{\mathbf{I},\mathbf{A}}$$
as $X\mathbf{A}$ is closed

Alternatively a direct proof of Proposition 5.4.3 would proceed by induction on X as follows:

- a) For the atomic cases this follows from Proposition 5.4.2.
- b) Case $X = \neg X_1$: By induction hypothesis (IH) $X_1^{\mathbf{I},\mathbf{A}} = [X_1\mathbf{A}]^{\mathbf{I}}$ which implies $\neg [X_1^{\mathbf{I},\mathbf{A}}] = \neg [[X_1\mathbf{A}]^{\mathbf{I}}]$. The induction step follows as

$$[\neg X_1]^{\mathbf{I},\mathbf{A}} = \neg [X_1^{\mathbf{I},\mathbf{A}}] = \neg [[X_1\mathbf{A}]^{\mathbf{I}}] = [[\neg X_1]\mathbf{A}]^{\mathbf{I}}.$$

- c) Case $X = (X_1 \circ X_2)$: Analogous to b).
- d) Case $X = (\forall x)X_1$: By IH we know that $[X_1]^{\mathbf{I},\mathbf{B}} = [X_1\mathbf{B}]^{\mathbf{I}}$. Note that we can conceive the assignment **B** as a substitution (of closed terms) and thus obtain the equality: $\mathbf{B} = (\mathbf{B}_x)\{x \mapsto B(x)\}$.

Furthermore III is applicable to the formula $X\mathbf{B}_x$, hence we obtain $[X\mathbf{B}_x]^{\mathbf{I},\mathbf{C}} = [(X\mathbf{B}_x)\mathbf{C}]^{\mathbf{I}}$ for any assignment \mathbf{C} . If we assume further that \mathbf{C} is defined such that $\mathbf{C}(x) = \mathbf{B}(x)$, and $\mathbf{C}(y)$ is arbitrary for $x \neq y$, then we obtain $[X\mathbf{B}_x]^{\mathbf{I},\mathbf{C}} = [(X\mathbf{B}]^{\mathbf{I}}, \text{ as } (X\mathbf{B}_x)\mathbf{C} = X\mathbf{B}.$

Now we show that $[(\forall x)X]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ iff $[(\forall x)X\mathbf{A}]^{\mathbf{I}} = \mathbf{t}$:

 $[(\forall x)X]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ iff $[X]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ for all x-variants **B** of **A**

- iff $[X\mathbf{B}]^{\mathbf{I}} = \mathbf{t}$ for all *x*-variants \mathbf{B} of \mathbf{A} (by IH)
- iff $[X\mathbf{B}_x]^{\mathbf{I},\mathbf{C}} = \mathbf{t}$ for all assignments \mathbf{C} , s.t. $\mathbf{C}(x) = \mathbf{B}(x)$ and \mathbf{C} arbitrary otherwise and all x-variants \mathbf{B} of \mathbf{A}
- iff $[(\forall x)X\mathbf{B}_x]^{\mathbf{I},\mathbf{D}} = \mathbf{t}$ for all assignments \mathbf{D}
- iff $[(\forall x)X\mathbf{B}_x]^{\mathbf{I}} = \mathbf{t} ((\forall x)X\mathbf{B}_x \text{ is closed})$
- iff $[((\forall x)X)\mathbf{A}]^{\mathbf{I}} = \mathbf{t}$ as **B** is an *x*-variant of **A**.

e) Analogous to d).

9.4 Exercise 5.4.2

Solution. We only consider the first case. Suppose $\mathbf{M} = (\mathbf{D}, \mathbf{I})$.

 $(\forall x)X$ is true in **M** iff $[(\forall x)X]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ for all assignments **A**

- iff $[X]^{\mathbf{I},\mathbf{B}} = \mathbf{t}$ for all *x*-variants **B** of **A**
- iff $[(X \{x \mapsto \mathbf{B}(x)\})]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ for all x-variants **B** of **A** as **B** is an x-variant of **A** by the general statement of Prop. 5.3.7
- iff $[(X\{x \mapsto d\})]^{\mathbf{I},\mathbf{A}} = \mathbf{t}$ for all $d \in \mathbf{D}$.