Overview	Organistion	Background	Mutual Exclusion	Overview	Organistion	Backgroui	nd	Mutual Exclusion
http	Georg Moser (VU) ¹ ¹ georg.mose office hours: Thu ² christian.vc office hours: Tu	A 703600 VU3 .ac.at/teaching/ws05/1 Christian Vogt (VU) ² er@uibk.ac.at ursday 12am-2pm ogt@uibk.ac.at uesday 9am-11am	logic/	wee wee wee		week 7 week 8 week 9 week 10 week 11 1st exam	November 30 December 7 December 14 January 11 January 18 January 25	
Overview	Organistion	< □ > < 圕 > < 돌 > Background	< া হ তাও ে Mutual Exclusion	Overview	Organistion	∢ c Backgroui	□ > 《 @ > 《 둘 > 《 〕 nd	≣⊧ ≞ లి⊂ు Mutual Exclusion
First-C mated Texts i ting, XVII, 3	Order Logic and Auto- Theorem Proving, Series: in Computer Science, Fit- Melvin, 2nd ed., 1996, 348 p. 15 illus., Hardcover 0-387-94593-8	- Melvin Fitting		Overview Week 1 Week 2 Week 3 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9	Introduction & Bay Introduction to For Propositional Logic The Replacement Semantic Tableaux Resolution (propos First-Order Logic The Model Existen	rmal Proof c: Syntax & S Theorem, Uni c (propositiona itional case)	form Notations al case) (first-order)	
Transparencies and homework are available from IP starting with 138.232; solutions to selected exercises will be available on-line				Week 9 Applications of the Model Existence TheoremWeek 10 First-Order Proof Procedure & CompletenessWeek 11 Implementing Tableaux and Resolution				

after they have been discussed.

Background

Organisational Matters

The lecture is a VU, i.e., 'Vorlesung" and "Übung" are combined. One grade only will be given.

We offer 3 exercise-groups ... attendence is not mandatory, but in your own interest.

There will be a mid-term test (45 min) on Novemer 16. For the final grade we take into account:

• The grade of the final exam (2/3)

Organistion

Organistion

- The grade of the mid-term test and your cooperation in the exercise classes (1/3)
- UEGroup 1Wednesday 16.00-17.00, HS 10Georg MoserGroup 2Thursday 8.00-9.00, HS 10Christian VogtGroup 3Thursday 9.00-10.00, HS 10Christian Vogt

Background

There is not only one logic

There are many logics: temporal, modal, intuitionistic, fuzzy, dynamic, etc.

Especially useful in model checking and program verification: temporal and modal logics.

We deal with classical, propositional and first-order logic ... for good reasons this is the basis of everything else.

Definition (informal)

Logic is the study of reasoning and mathematical logic is the study of the mathematical reasoning.

Background

Example

Overview

Consider "That is an ugly chair" or "This is a nice lecture room". Are those assertions true?

Classical logic is incapable to deal with these assertions.

Definition (cont'd)

(Classical) Logic deals only with assertions that are either true or false; i.e. there must be no ambiguity (or discussion) about the truth of the assertions.

When dealing with non-mathematical examples, we abstract from the real-word and build a (mathematical) model.

In reasoning we use sentences. A primitive assertion like "The program P terminates" is a sentence.

To build complex sentences we use connectives like "and", "or", "not", "implies", etc. and quantifier: "every", "some", etc.

Definition

We interpret "*P* implies *Q*" in the material sense: "*P* implies *Q*" will have the same truth value as "either *P* is false or *Q* is true".

The language of first-order logic

Organistion

\wedge	and	propositional connectives
\vee	or	
_	not	
\rightarrow	implies	
\forall	every	quantifiers
Ξ	some	

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ● ヨ ● のへの

Mutual Exclusion

Overview

◆□> <圖> < E> < E> E のQC

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ののの

Mutual Exclusion

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の < ©

Mutual Exclusion

Mutual Exclusion

Concurrent Processes: Mutual Exclusion

Organistion

We identify a critical sections in the code of each process and arrange that at most one process has access to its critical section at a time.

Task Define a protocol, to determine which process is allowed to enter the critical section under what circumstances.

Properties

- Safety. Only one process in the critical section at one time.
- ▶ Liveness. When a process wants to enter its critical section, it will be allowed to.

Background

▶ Non-blocking. A process can always request to enter the critical section.

Modelling 'mutual exclusion' 52 t_1, n_2 n_1, t_2 S4 S5, t_1, t_2 n_1, c_2 c_1, n_2 t_1, c_2 c_1, t_2 Process *i* is in non-critical state n; Process *i* is trying to enter critical state ti Process *i* is in its critical state Ci

Background

Mutual Exclusion

Our model is abstract; to talk about it, we define a language.

Organistion

States

To speak about the states, we need names for these states. In this case 8 constant symbols k_0, k_1, \ldots, k_7 suffice.

Definition

Names are used to denote abstract objects, like states or numbers. Constants are very simply names; more complicated names make additional use of function symbols.

Transition relation

In the model we can transfere from one state to another ... expressed by the transition relation. To name this relation we introduce a binary relation symbol R.

 $R(k_3, k_0)$ expresses that state s_0 is reachable from state s_3 in one step.

Definition

Overview

Expressions like $R(k_3, k_0)$ are called atomic formulas.

Organistion

Propositions

To name the propositions c_i , n_i , t_i , we include unary relation symbols C_i, N_i, T_i .

Path

In the 'mutual exclusion' model we can follow a path. We introduce another binary relation symbol P to express this.

Complex statements

Starting with atomic formulas, using connectives and quantifiers, we build complex expressions, or formulas.

 $\forall x \neg (C_1(x) \land C_2(x))$ expresses Safety.

