Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser $(VU)^1$ Christian Vogt $(VU)^2$

¹georg.moser@uibk.ac.at office hours: Thursday 1pm-3pm

²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Logic LVA 703600 G. Moser 1

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Motivation

let us look at a tableau proof of

$$\{(\forall x)(P(x) \lor Q(x)), (\forall x) \neg P(x), (\exists x) \neg Q(x)\}$$

closed free-variable $(\forall x)(P(x) \lor Q(x)) \qquad (\forall x)(P(x) \lor Q(x))$ $(\forall x) \neg P(x) \qquad (\forall x) \neg P(x)$ $(\exists x) \neg Q(x) \qquad (\exists x) \neg Q(x)$ $\neg Q(c) \qquad \neg Q(c)$ $\neg P(d) \qquad \neg P(x)$ $P(c) \lor Q(c) \qquad P(y) \lor Q(y)$

 $\neg P(c)$

 $\gamma(x)$ (for an unbound variable x) δ $\delta(f(x_1, \dots, x_n))$ (for f new, \vec{x} all free variables in δ)

2

Unification

to close the tableau, we have to find σ such that

$$Q(c)\sigma = Q(y)\sigma$$
 $P(x)\sigma = P(y)\sigma$

obviously $\sigma = \{x \mapsto c, y \mapsto c\}$ would be sufficient

a unification problem is a finite set of equations

$$S = \{s_1 = [t_1, \dots, s_n = [t_n]\}$$

→ a unifier of S is a substitution such that

$$s_i \sigma = t_i \sigma$$
 for all $i = 1, \ldots, n$

- ⇒ a substitution σ is more general than a substitution τ , if $\tau = \sigma \rho$ for some substitution ρ ; we write $\sigma \lesssim \tau$
- ⇒ a most general unifier (mgu) is a unifier σ s.t. for all unifiers τ : $\sigma \lesssim \tau$

Logic LVA 703600 G. Moser 3

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Example

→ the unification problem $\{f(y, h(a)) = f(h(x), h(z))\}$ is solvable with

$$\sigma_1 = \{ y \mapsto h(x), z \mapsto a \}$$

$$\sigma_2 = \{ x \mapsto k(w), y \mapsto h(k(w)), z \mapsto a \}$$

but $\sigma_1 \lesssim \sigma_2$ and σ_1 is a mgu

ightharpoonup the unification problem $\{f(x,x)=f(a,b)\}$ is not solvable

Lemma

idempotent substitutions

a substitution σ is idempotent if $\sigma = \sigma \sigma$; then

ightharpoonup a substitution σ is idempotent iff $\mathrm{dom}(\sigma)\cap\mathrm{vrg}(\sigma)=\emptyset$

Theorem If a unification problem S is solvable, then it has an idempotent mgu.

Solved Forms

- ightharpoonup a unification problem $S = \{x_1 = t_1, \dots, x_n = t_n\}$ is in solved form if the x_i are pairwise distinct and none of the x_i occurs in any of the t_i
- ightharpoonup for S in solved form, we define $\vec{S} = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$

Lemma

let S be in solved form; then

- ightharpoonup for any unifier σ of S: $\vec{S}\sigma = \sigma$
- \vec{S} is an idempotent mgu of S

Proof

(of the 2nd property)

- ightharpoonup idempotency follows as $\operatorname{dom}(\vec{S}) \cap \operatorname{vrg}(\vec{S}) = \emptyset$
- $ightharpoonup \vec{S}$ is a unifier: $x_i \vec{S} = t_i = t_i \vec{S}$
- $ightharpoonup \vec{S}$ is even a mgu: for all unifiers σ : $\vec{S} \lesssim \sigma$ by the 1. property

Logic LVA 703600

G. Moser

__

Motivation

Unification

Free-Variable Tableaux

Soundness & Completeness

Unification Algorithm

Delete
$$\frac{\{t=t\} \uplus S}{S}$$
Decompose
$$\frac{\{f(t_1,\ldots,t_n)=f(u_1,\ldots,u_n)\} \uplus S}{\{t_1=u_1,\ldots,t_n=u_n\} \cup S}$$
Orient
$$\frac{\{t=x\} \uplus S}{\{x=t\} \cup S} \quad \text{if } t \not\in \mathbf{V}$$
Eliminate
$$\frac{\{x=t\} \cup S}{\{x=t\} \cup S\{x \mapsto t\}} \quad \text{if } x \in \text{var}(S) - \text{var}(t)$$

let $S \Rightarrow T$ denote that T is reachable from S we define

Unify(S) = while there is some T such that $S \Rightarrow T$ do S := T; if S is in solved form then return \vec{S} else fail

The Unification Theorem

we consider the problem

$$S = \{x = f(a), g(x, x) = g(x, y)\}$$

$$\{x = f(a), g(x, x) = g(x, y)\} \Rightarrow \{x = f(a), g(f(a), f(a)) = g(f(a), y)\}$$
$$\Rightarrow \{x = f(a), f(a) = f(a), f(a) = y\}$$
$$\Rightarrow \{x = f(a), f(a) = y\}$$
$$\Rightarrow \{x = f(a), y = f(a)\}$$

Theorem

Unification Theorem

- → Unify terminates on all inputs
- \rightarrow if Unify returns σ , then σ is an idempotent mgu of S
- \rightarrow if S is solvable, Unify does not fail

Logic LVA 703600 G. Moser 7

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Proof

(of termination)

- ightharpoonup a variable x is called solved if it occurs exactly once in S and $x = t \in S$ with $x \notin var(t)$
- \rightarrow we write |t| to denote the number of symbols in t
- \rightarrow define a measure (n_1, n_2, n_3) for S
 - n_1 is the number of variables in S that are unsolved
 - n_2 is the size of S (i.e. $\sum_{s=t \in S} (|s| + |t|)$)
 - n_3 the number of equations $t = x \in S$
- → the measure decreases lexicographically

(of completeness)

it is easy to see that the transformation rules are unifier-preserving; moreover we use two fundamental properties of terms

- ightharpoonup an equation $f(s_1,\ldots,s_n)=g(t_1,\ldots,t_m)$ for $f\neq g$ has no solution
- ightharpoonup an equation x=t, $x\in \mathrm{var}(t)$ and x
 eq t has no solution \Box

Refinements of Unify

we introduce a special unification problem \bot that has no solution and add the following rules:

Clash
$$\frac{\{f(s_1,\ldots,s_n)=g(t_1,\ldots,t_m)\}\uplus S}{\bot}$$
 Occur-Check
$$\frac{\{x=t\}\uplus S}{\bot} \quad \text{if } x\in \text{var}(t) \text{ and } x\neq t$$

Example

consider the problem $\{f(x,x) = f(y,g(y))\}$

$$\{f(x,x) = f(y,g(y))\} \Rightarrow \{x = y, x = g(y)\}$$

 $\Rightarrow \{x = y, y = g(y)\}$
 $\Rightarrow \{\bot\}$ Occur-Check

Logic LVA 703600 G. Moser 9

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Definition

Lsko

- → let L = L(R, F, C) be a language; let par denote a countable set of constants not in C; let sko be a countable set of function symbols not in F;
- → the function symbols in sko are called Skolem functions
- ightharpoonup we write L^{sko} to denote $L(\mathbf{R}, \mathbf{F} \cup sko, \mathbf{C} \cup par)$

Remark free-variable tableau proofs will be of sentences of L and use formulas of L^{sko}

Definition

tableau substitutions

- ▶ let σ be a substitution and \mathbf{T} a tableau; we define $\mathbf{T}\sigma$ as the result of replacing every $X \in \mathbf{T}$ by $X\sigma$
- \rightarrow σ is free for a tableau **T** if σ is free for every formula in **T**

Free-Variable Semantic Tableaux

- → the language of free-variable tableau is L^{sko}
- → the quantifier rules are

$$\frac{\gamma}{\gamma(x)} \qquad \frac{\delta}{\delta(f(x_1,\ldots,x_n))}$$

(for an unbound variable x) (for f new Skolem, \vec{x} all free variables in δ)

- $\rightarrow \sigma$ is free for a tableau **T** if σ is free for every formula in **T**
- ightharpoonup tableau substitution rule: If **T** is a tableau for *S* and σ is free for **T** then **T** σ is also a tableau for *S*.

Logic LVA 703600 G. Moser 11

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Example

we consider a tableau-proof of

$$(\exists w)(\forall x)R(x,w,f(x,w)) \rightarrow (\exists w)(\forall x)(\exists y)R(x,w,y)$$

$$\neg \{(\exists w)(\forall x)R(x,w,f(x,w)) \rightarrow (\exists w)(\forall x)(\exists y)R(x,w,y)\}$$

$$(\exists w)(\forall x)R(x,w,f(x,w))$$

$$\neg (\exists w)(\forall x)(\exists y)R(x,w,y)$$

$$(\forall x)R(x,a,f(x,a)) \qquad \delta\text{-rule with } a \text{ Skolem}$$

$$\neg (\forall x)(\exists y)R(x,v_1,y) \qquad \gamma\text{-rule with } v_1 \text{ new}$$

$$\neg (\exists y)R(b(v_1),v_1,y) \qquad \delta\text{-rule with } b \text{ Skolem}$$

$$R(v_2,a,f(v_2,a)) \qquad \gamma\text{-rule with } v_2 \text{ new}$$

$$\neg R(b(v_1),v_1,v_3) \qquad \gamma\text{-rule with } v_3 \text{ new}$$

as final step we apply the free substitution

$$\sigma = \{v_1 \mapsto a, v_2 \mapsto b(a), v_3 \mapsto f(b(a), a)\}$$
 to make $R(v_2, a, f(v_2, a))$ and $\neg R(b(v_1), v_1, v_3)$ conflict

how-to find the substitution σ ? \Rightarrow : use unification

but σ has to be free! \Rightarrow : consider atomic closure, only

why does this work:

- \rightarrow let A and $\neg B$ be quantifier-free and occur on a branch in **T**
- ightharpoonup suppose σ is a "unifier" for A and B
- ightharpoonup clearly $\operatorname{vrg}(\sigma) \subset \operatorname{fvar}(A) \cup \operatorname{fvar}(B)$
- ⇒ let $\{v_1, \ldots, v_k\}$ denote the variables introduced by a γ -rule; by definition the v_i are distinct from any bound variable
- **→** note that $fvar(A) \cup fvar(B) \subseteq \{v_1, \dots, v_k\}$
- \rightarrow hence σ is free for **T**

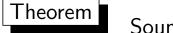
atomic closure rule

suppose **T** is a tableau for S; some branch of **T** contains A and $\neg B$, both atomic; then **T** σ is a tableau for S, where σ is a mgu of A and B

Logic LVA 703600 G. Moser 13

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Soundness



Soundness Theorem

If the sentence X has a free-variable tableau proof, then X is valid.

(sketch)

the new problem are the free-variables introduced by γ -rules, to handle these, we treat them as universally quantified \Box

we informally define tableau strategies: a tableau strategy ${\cal R}$ for a tableau ${f T}$ expresses that either

- no continuation of a tableau is possible (using side-information), or
- \rightarrow produces an expansion T' (and perhaps some side-information)

Example

we can define a strategy R to express that

- only unused non-literals are expanded
- a priority order on the branches is enforced
- → a priority order on formula occurrences is enforced

Logic LVA 703600 G. Moser 15

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Definition

fairness

we call a strategy \mathcal{R} fair if for any sentence X, the sequence T_1, T_2, \ldots for X constructed according to \mathcal{R} fulfils:

- ightharpoonup every non-literal formula occurrence in \mathbf{T}_n is eventually expanded on each branch where it occurs
- ightharpoonup every γ -formula in \mathbf{T}_n has the γ -rule applied to it arbitrarily often on each branch where it occurs

Example

the above described strategy $\mathcal R$ is not fair

Definition

most general atomic closure substitution

let **T** be a tableau with branches τ_1, \ldots, τ_n ; for each i, A_i and $\neg B_i$ are pairs of literals on τ_i ; suppose σ is a mgu of the "unification problem" $\{A_1 = B_1, \ldots, A_n = B_n\}$; we call σ a most general atomic closure substitution

Completeness

Completeness

Let \mathcal{R} be any fair tableau strategy. If X is a valid sentence of L, X has a tableau proof which fulfils:

- ightharpoonup all tableau expansion rules applications come first and are according to rule $\mathcal R$
- ightharpoonup a single tableau substitution rule follows, using a substitution σ that is a most general atomic closure substitution

 Logic
 LVA 703600
 G. Moser
 17

Motivation Unification Free-Variable Tableaux Soundness & Completeness

Summary

- → unification
- unification algorithm by transformation
- ➡ free-variable semantic tableaux
- → refinements of free-variable tableaux
- → tableau strategy, fairness
- → soundness & completeness