Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/
Georg Moser (VU) ${ }^{1} \quad$ Christian Vogt (VU) ${ }^{2}$
${ }^{1}$ georg.moser@uibk.ac.at office hours: Thursday $1 \mathrm{pm}-3 \mathrm{pm}$
${ }^{2}$ christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Logic	LVA 703600	G. Moser	1
Motivation	Unification	Free-Variable Tableaux	Soundness \& Completeness

Unification

to close the tableau, we have to find σ such that

$$
Q(c) \sigma=Q(y) \sigma \quad P(x) \sigma=P(y) \sigma
$$

obviously $\sigma=\{x \mapsto c, y \mapsto c\}$ would be sufficient
\Rightarrow a unification problem is a finite set of equations

$$
S=\left\{s_{1}=? t_{1}, \ldots, s_{n}=? t_{n}\right\}
$$

\Rightarrow a unifier of S is a substitution such that

$$
s_{i} \sigma=t_{i} \sigma \quad \text { for all } i=1, \ldots, n
$$

\Rightarrow a substitution σ is more general than a substitution τ, if $\tau=\sigma \rho$ for some substitution ρ; we write $\sigma \lesssim \tau$
\Rightarrow a most general unifier (mgu) is a unifier σ s.t. for all unifiers τ : $\sigma \lesssim \tau$
let us look at a tableau proof of

$$
\{(\forall x)(P(x) \vee Q(x)),(\forall x) \neg P(x),(\exists x) \neg Q(x)\}
$$

closed
free-variable

$$
\begin{gathered}
(\forall x)(P(x) \vee Q(x)) \\
(\forall x) \neg P(x) \\
(\exists x) \neg Q(x) \\
\neg Q(c) \\
\neg P(d) \\
P(c) \vee Q(c) \\
P(c) \quad Q(c) \\
\neg P(c) \quad \neg P(c)
\end{gathered}
$$

$$
(\forall x)(P(x) \vee Q(x))
$$

$$
\frac{\gamma}{\gamma(x)}
$$

$$
(\forall x) \neg P(x)
$$

$$
(\exists x) \neg Q(x)
$$

Logic LVA 703600 G. Moser

Motivation
Unification
Free-Variable Tableaux
(for an unbound variable x)

$$
\neg Q(c)
$$

$$
\neg P(x)
$$

$$
\begin{gathered}
\frac{\delta}{\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)} \\
(\text { for } f \text { new, } \vec{x} \\
\text { all free } \\
\text { variables in } \delta)
\end{gathered}
$$

Example

\Rightarrow the unification problem $\{f(y, h(a))=f(h(x), h(z))\}$ is solvable with

$$
\begin{aligned}
& \sigma_{1}=\{y \mapsto h(x), z \mapsto a\} \\
& \sigma_{2}=\{x \mapsto k(w), y \mapsto h(k(w)), z \mapsto a\}
\end{aligned}
$$

but $\sigma_{1} \lesssim \sigma_{2}$ and σ_{1} is a mgu
\Rightarrow the unification problem $\{f(x, x)=f(a, b)\}$ is not solvable
Lemma
idempotent substitutions
a substitution σ is idempotent if $\sigma=\sigma \sigma$; then
\Rightarrow a substitution σ is idempotent iff $\operatorname{dom}(\sigma) \cap \operatorname{vrg}(\sigma)=\emptyset$
Theorem If a unification problem S is solvable, then it has an idempotent mgu.
\qquad

Solved Forms

\Rightarrow a unification problem $S=\left\{x_{1}=t_{1}, \ldots, x_{n}=t_{n}\right\}$ is in solved form if the x_{i} are pairwise distinct and none of the x_{i} occurs in any of the t_{j}
\Rightarrow for S in solved form, we define $\vec{S}=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$

Lemma

let S be in solved form; then
\Rightarrow for any unifier σ of $S: \vec{S} \sigma=\sigma$
$\Rightarrow \vec{S}$ is an idempotent mgu of S
Proof
(of the 2nd property)
\Rightarrow idempotency follows as $\operatorname{dom}(\vec{S}) \cap \operatorname{vrg}(\vec{S})=\emptyset$
$\Rightarrow \vec{S}$ is a unifier: $x_{i} \vec{S}=t_{i}=t_{i} \vec{S}$
$\Rightarrow \vec{S}$ is even a mgu: for all unifiers $\sigma: \vec{S} \lesssim \sigma$ by the 1 . property

Unification Algorithm

$$
\begin{array}{ll}
\text { Delete } & \frac{\{t=t\} \uplus S}{S} \\
\text { Decompose } & \frac{\left\{f\left(t_{1}, \ldots, t_{n}\right)=f\left(u_{1}, \ldots, u_{n}\right)\right\} \uplus S}{\left\{t_{1}=u_{1}, \ldots, t_{n}=u_{n}\right\} \cup S} \\
\text { Orient } \quad & \frac{\{t=x\} \uplus S}{\{x=t\} \cup S} \quad \text { if } t \notin \mathbf{V} \\
\text { Eliminate } & \frac{\{x=t\} \uplus S}{\{x=t\} \cup S\{x \mapsto t\}} \quad \text { if } x \in \operatorname{var}(S)-\operatorname{var}(t)
\end{array}
$$

let $S \Rightarrow T$ denote that T is reachable from S
we define
$\operatorname{Unify}(S)=$ while there is some T such that $S \Rightarrow T$ do $S:=T$; if S is in solved form then return \vec{S} else fail

Logic LVA 73600		6. Moser	
Motivation	Unification	Free-Variable Tableaux	Soundness \& Co
The Unification Theorem			
Example			
$S=\{x=f(a), g(x, x)=g(x, y)\}$			
$\{x=f(a), g(x, x)=g(x, y)\} \Rightarrow\{x=f(a), g(f(a), f(a))=g(f(a), y)\}$			
$\Rightarrow\{x=f(a), f(a)=f(a), f(a)=y\}$			
$\Rightarrow\{x=f(a), f(a)=y\}$			
$\Rightarrow\{x=f(a), y=f(a)\}$			

Theorem

Unification Theorem
\Rightarrow Unify terminates on all inputs
\Rightarrow if Unify returns σ, then σ is an idempotent mgu of S
\Rightarrow if S is solvable, Unify does not fail

Logic LVA 703600		G. Moser	6
Motivation	Unification	Free-Variable Tableaux	Soundness \& Completeness

Proof (of termination)

\Rightarrow a variable x is called solved if it occurs exactly once in S and $x=t \in S$ with $x \notin \operatorname{var}(t)$
\Rightarrow we write $|t|$ to denote the number of symbols in t
\Rightarrow define a measure $\left(n_{1}, n_{2}, n_{3}\right)$ for S
n_{1} is the number of variables in S that are unsolved
n_{2} is the size of S (i.e. $\sum_{s=t \in S}(|s|+|t|)$)
n_{3} the number of equations $t=x \in S$
\Rightarrow the measure decreases lexicographically
Proof (of completeness)
it is easy to see that the transformation rules are unifier-preserving; moreover we use two fundamental properties of terms
\Rightarrow an equation $f\left(s_{1}, \ldots, s_{n}\right)=g\left(t_{1}, \ldots, t_{m}\right)$ for $f \neq g$ has no solution
\Rightarrow an equation $x=t, x \in \operatorname{var}(t)$ and $x \neq t$ has no solution

Refinements of Unify

we introduce a special unification problem \perp that has no solution and add the following rules:

Example
consider the problem $\{f(x, x)=f(y, g(y))\}$

$$
\begin{aligned}
\{f(x, x)=f(y, g(y))\} & \Rightarrow\{x=y, x=g(y)\} \\
& \Rightarrow\{x=y, y=g(y)\}
\end{aligned}
$$

$$
\Rightarrow\{\perp\} \quad \text { Occur-Check }
$$

Definition

$L^{\text {sko }}$
\Rightarrow let $\mathrm{L}=\mathrm{L}(\mathbf{R}, \mathbf{F}, \mathbf{C})$ be a language; let par denote a countable set of constants not in C; let sko be a countable set of function symbols not in \mathbf{F};
\Rightarrow the function symbols in sko are called Skolem functions
\Rightarrow we write $L^{\text {sko }}$ to denote $L(\mathbf{R}, \mathbf{F} \cup$ sko, $\mathbf{C} \cup$ par $)$
Remark free-variable tableau proofs will be of sentences of L and use formulas of $\mathrm{L}^{\text {sko }}$

Definition

tableau substitutions
\Rightarrow let σ be a substitution and \mathbf{T} a tableau; we define $\mathbf{T} \sigma$ as the result of replacing every $X \in \mathbf{T}$ by $X \sigma$
$\Rightarrow \sigma$ is free for a tableau \mathbf{T} if σ is free for every formula in \mathbf{T}

Logic LVA 703600	G. Moser	9	
Motivation	Unification	Free-Variable Tableaux	Soundness \& Completeness

Free-Variable Semantic Tableaux

\Rightarrow the language of free-variable tableau is $L^{\text {sko }}$
\Rightarrow the quantifier rules are

$$
\frac{\gamma}{\gamma(x)} \quad \frac{\delta}{\delta\left(f\left(x_{1}, \ldots, x_{n}\right)\right)}
$$

$\begin{array}{ll}\text { (for an unbound variable } x) & \begin{array}{l}(\text { for } f \text { new Skolem, } \vec{x} \text { all free } \\ \text { variables in } \delta)\end{array}\end{array}$ variables in δ)
$\Rightarrow \sigma$ is free for a tableau \mathbf{T} if σ is free for every formula in \mathbf{T}
\Rightarrow tableau substitution rule: If \mathbf{T} is a tableau for S and σ is free for \mathbf{T} then $\mathbf{T} \sigma$ is also a tableau for S.

Logic LVA 703600
Motivation

Example

we consider a tableau-proof of
$(\exists w)(\forall x) R(x, w, f(x, w)) \rightarrow(\exists w)(\forall x)(\exists y) R(x, w, y)$
$\neg\{(\exists w)(\forall x) R(x, w, f(x, w)) \rightarrow(\exists w)(\forall x)(\exists y) R(x, w, y)\}$
$(\exists w)(\forall x) R(x, w, f(x, w))$
$\neg(\exists w)(\forall x)(\exists y) R(x, w, y)$
$(\forall x) R(x, a, f(x, a)) \quad \delta$-rule with a Skolem $\neg(\forall x)(\exists y) R\left(x, v_{1}, y\right) \quad \gamma$-rule with v_{1} new $\neg(\exists y) R\left(b\left(v_{1}\right), v_{1}, y\right) \quad \delta$-rule with b Skolem
$R\left(v_{2}, a, f\left(v_{2}, a\right)\right)$
$\neg R\left(b\left(v_{1}\right), v_{1}, v_{3}\right) \quad \gamma$-rule with v_{3} new
as final step we apply the free substitution

$$
\sigma=\left\{v_{1} \mapsto a, v_{2} \mapsto b(a), v_{3} \mapsto f(b(a), a)\right\}
$$

to make $R\left(v_{2}, a, f\left(v_{2}, a\right)\right)$ and $\neg R\left(b\left(v_{1}\right), v_{1}, v_{3}\right)$ conflict
how-to find the substitution σ ?
\Rightarrow : use unification
but σ has to be free!
: consider atomic closure, only
why does this work:
\Rightarrow let A and $\neg B$ be quantifier-free and occur on a branch in \mathbf{T}
\Rightarrow suppose σ is a "unifier" for A and B
\Rightarrow clearly $\operatorname{vrg}(\sigma) \subset$ fvar $(A) \cup f \operatorname{var}(B)$
\Rightarrow let $\left\{v_{1}, \ldots, v_{k}\right\}$ denote the variables introduced by a γ-rule; by definition the v_{i} are distinct from any bound variable
\Rightarrow note that $f \operatorname{var}(A) \cup f \operatorname{var}(B) \subseteq\left\{v_{1}, \ldots, v_{k}\right\}$
\Rightarrow hence σ is free for \mathbf{T}
Definition
atomic closure rule
suppose \mathbf{T} is a tableau for S; some branch of \mathbf{T} contains A and $\neg B$, both atomic; then $\mathbf{T} \sigma$ is a tableau for S, where σ is a mgu of A and B

Logic LVA 703600	G. Moser	13	
Motivation	Unification	Free-Variable Tableaux	Soundness \& Completenes

we informally define tableau strategies: a tableau strategy \mathcal{R} for a tableau \mathbf{T} expresses that either
\Rightarrow no continuation of a tableau is possible (using side-information), or
\Rightarrow produces an expansion \mathbf{T}^{\prime} (and perhaps some side-information)

Example

we can define a strategy \mathbf{R} to express that
\Rightarrow only unused non-literals are expanded
\Rightarrow a priority order on the branches is enforced
\Rightarrow a priority order on formula occurrences is enforced

Soundness

Theorem

Soundness Theorem

If the sentence X has a free-variable tableau proof, then X is valid.

Proof

(sketch)

the new problem are the free-variables introduced by γ-rules, to handle these, we treat them as universally quantified

Logic LVA 703600	G. Moser	14	
Motivation	Unification	Free-Variable Tableaux	Soundness \& Completeness

Definition

 fairnesswe call a strategy \mathcal{R} fair if for any sentence X, the sequence
$\mathbf{T}_{1}, \mathbf{T}_{2}, \ldots$ for X constructed according to \mathcal{R} fulfils:
\Rightarrow every non-literal formula occurrence in \mathbf{T}_{n} is eventually expanded on each branch where it occurs
\Rightarrow every γ-formula in \mathbf{T}_{n} has the γ-rule applied to it arbitrarily often on each branch where it occurs

Example

the above described strategy \mathcal{R} is not fair

Definition

most general atomic closure substitution
let \mathbf{T} be a tableau with branches $\tau_{1}, \ldots, \tau_{n}$; for each i, A_{i} and $\neg B_{i}$ are pairs of literals on τ_{i}; suppose σ is a mgu of the "unification problem" $\left\{A_{1}=B_{1}, \ldots, A_{n}=B_{n}\right\}$; we call σ a most general atomic closure substitution

Theorem

Completeness

Let \mathcal{R} be any fair tableau strategy. If X is a valid sentence of L, X has a tableau proof which fulfils:
\Rightarrow all tableau expansion rules applications come first and are according to rule \mathcal{R}
\Rightarrow a single tableau substitution rule follows, using a substitution σ that is a most general atomic closure substitution
\Rightarrow unification
\Rightarrow unification algorithm by transformation
\Rightarrow free-variable semantic tableaux
\Rightarrow refinements of free-variable tableaux
\Rightarrow tableau strategy, fairness
\Rightarrow soundness \& completeness

