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Motivation

let us look at a tableau proof of

{(∀x)(P(x) ∨ Q(x)), (∀x)¬P(x), (∃x)¬Q(x)}

closed free-variable

(∀x)(P(x) ∨ Q(x))

(∀x)¬P(x)

(∃x)¬Q(x)

¬Q(c)

¬P(d)

P(c) ∨ Q(c)

P(c) Q(c)

¬P(c) ¬P(c)

(∀x)(P(x) ∨ Q(x))

(∀x)¬P(x)

(∃x)¬Q(x)

¬Q(c)

¬P(x)

P(y) ∨ Q(y)

P(y) Q(y)

γ

γ(x)

(for an
unbound

variable x)

δ

δ(f (x1, . . . , xn))

(for f new, ~x
all free

variables in δ)
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Unification

to close the tableau, we have to find σ such that

Q(c)σ = Q(y)σ P(x)σ = P(y)σ

obviously σ = {x 7→ c, y 7→ c} would be sufficient

➡ a unification problem is a finite set of equations

S = {s1 =? t1, . . . , sn =? tn}

➡ a unifier of S is a substitution such that

siσ = tiσ for all i = 1, . . . , n

➡ a substitution σ is more general than a substitution τ , if
τ = σρ for some substitution ρ; we write σ . τ

➡ a most general unifier (mgu) is a unifier σ s.t. for all unifiers τ :
σ . τ
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Example

➡ the unification problem {f (y , h(a)) = f (h(x), h(z))} is
solvable with

σ1 = {y 7→ h(x), z 7→ a}
σ2 = {x 7→ k(w), y 7→ h(k(w)), z 7→ a}

but σ1 . σ2 and σ1 is a mgu

➡ the unification problem {f (x , x) = f (a, b)} is not solvable

Lemma
idempotent substitutions

a substitution σ is idempotent if σ = σσ; then

➡ a substitution σ is idempotent iff dom(σ) ∩ vrg(σ) = ∅

Theorem
If a unification problem S is solvable, then it has an

idempotent mgu.
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Solved Forms

➡ a unification problem S = {x1 = t1, . . . , xn = tn} is in solved
form if the xi are pairwise distinct and none of the xi occurs in
any of the tj

➡ for S in solved form, we define ~S = {x1 7→ t1, . . . , xn 7→ tn}

Lemma
let S be in solved form; then

➡ for any unifier σ of S : ~Sσ = σ

➡ ~S is an idempotent mgu of S

Proof
(of the 2nd property)

➡ idempotency follows as dom(~S) ∩ vrg(~S) = ∅
➡ ~S is a unifier: xi

~S = ti = ti~S

➡ ~S is even a mgu: for all unifiers σ: ~S . σ by the 1.
property
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Unification Algorithm

Delete
{t = t} ] S

S

Decompose
{f (t1, . . . , tn) = f (u1, . . . , un)} ] S

{t1 = u1, . . . , tn = un} ∪ S

Orient
{t = x} ] S

{x = t} ∪ S
if t 6∈ V

Eliminate
{x = t} ] S

{x = t} ∪ S{x 7→ t}
if x ∈ var(S)− var(t)

let S ⇒ T denote that T is reachable from S

we define

Unify(S) = while there is some T such that S ⇒ T do S := T ;

if S is in solved form then return ~S else fail
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The Unification Theorem

Example
we consider the problem

S = {x = f (a), g(x , x) = g(x , y)}

{x = f (a), g(x , x) = g(x , y)} ⇒ {x = f (a), g(f (a), f (a)) = g(f (a), y)} Eliminate

⇒ {x = f (a), f (a) = f (a), f (a) = y} Decompose

⇒ {x = f (a), f (a) = y} Delete

⇒ {x = f (a), y = f (a)} Orient

Theorem
Unification Theorem

➡ Unify terminates on all inputs

➡ if Unify returns σ, then σ is an idempotent mgu of S

➡ if S is solvable, Unify does not fail
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Proof
(of termination)

➡ a variable x is called solved if it occurs exactly once in S and
x = t ∈ S with x 6∈ var(t)

➡ we write | t | to denote the number of symbols in t

➡ define a measure (n1, n2, n3) for S
n1 is the number of variables in S that are unsolved
n2 is the size of S (i.e.

∑
s=t∈S(|s | + | t |))

n3 the number of equations t = x ∈ S
➡ the measure decreases lexicographically

Proof
(of completeness)

it is easy to see that the transformation rules are unifier-preserving;
moreover we use two fundamental properties of terms

➡ an equation f (s1, . . . , sn) = g(t1, . . . , tm) for f 6= g has no
solution

➡ an equation x = t, x ∈ var(t) and x 6= t has no solution
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Refinements of Unify

we introduce a special unification problem ⊥ that has no solution
and add the following rules:

Clash
{f (s1, . . . , sn) = g(t1, . . . , tm)} ] S

⊥

Occur-Check
{x = t} ] S

⊥
if x ∈ var(t) and x 6= t

Example
consider the problem {f (x , x) = f (y , g(y))}

{f (x , x) = f (y , g(y))} ⇒ {x = y , x = g(y)}
⇒ {x = y , y = g(y)}
⇒ {⊥} Occur-Check
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Definition
Lsko

➡ let L = L(R,F,C) be a language; let par denote a countable
set of constants not in C; let sko be a countable set of
function symbols not in F;

➡ the function symbols in sko are called Skolem functions

➡ we write Lsko to denote L(R,F ∪ sko,C ∪ par)

Remark
free-variable tableau proofs will be of sentences of L

and use formulas of Lsko

Definition
tableau substitutions

➡ let σ be a substitution and T a tableau; we define Tσ as the
result of replacing every X ∈ T by Xσ

➡ σ is free for a tableau T if σ is free for every formula in T
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Free-Variable Semantic Tableaux

➡ the language of free-variable tableau is Lsko

➡ the quantifier rules are

γ

γ(x)

δ

δ(f (x1, . . . , xn))

(for an unbound variable x) (for f new Skolem, ~x all free
variables in δ)

➡ σ is free for a tableau T if σ is free for every formula in T

➡ tableau substitution rule: If T is a tableau for S and σ is free
for T then Tσ is also a tableau for S .
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Example
we consider a tableau-proof of

(∃w)(∀x)R(x ,w , f (x ,w)) → (∃w)(∀x)(∃y)R(x ,w , y)

¬{(∃w)(∀x)R(x ,w , f (x ,w)) → (∃w)(∀x)(∃y)R(x ,w , y)}
(∃w)(∀x)R(x ,w , f (x ,w))

¬(∃w)(∀x)(∃y)R(x ,w , y)

(∀x)R(x , a, f (x , a))

¬(∀x)(∃y)R(x , v1, y)

¬(∃y)R(b(v1), v1, y)

R(v2, a, f (v2, a))

¬R(b(v1), v1, v3)

δ-rule with a Skolem

γ-rule with v1 new

δ-rule with b Skolem

γ-rule with v2 new

γ-rule with v3 new

as final step we apply the free substitution

σ = {v1 7→ a, v2 7→ b(a), v3 7→ f (b(a), a)}
to make R(v2, a, f (v2, a)) and ¬R(b(v1), v1, v3) conflict
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how-to find the substitution σ? ➡: use unification

but σ has to be free! ➡: consider atomic closure, only

why does this work:

➡ let A and ¬B be quantifier-free and occur on a branch in T

➡ suppose σ is a“unifier” for A and B

➡ clearly vrg(σ) ⊂ fvar(A) ∪ fvar(B)

➡ let {v1, . . . , vk} denote the variables introduced by a γ-rule;
by definition the vi are distinct from any bound variable

➡ note that fvar(A) ∪ fvar(B) ⊆ {v1, . . . , vk}
➡ hence σ is free for T

Definition
atomic closure rule

suppose T is a tableau for S ; some branch of T contains A and
¬B, both atomic; then Tσ is a tableau for S , where σ is a mgu of
A and B
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Soundness

Theorem
Soundness Theorem

If the sentence X has a free-variable tableau proof, then X is valid.

Proof
(sketch)

the new problem are the free-variables introduced by γ-rules, to
handle these, we treat them as universally quantified
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we informally define tableau strategies: a tableau strategy R for a
tableau T expresses that either

➡ no continuation of a tableau is possible (using
side-information), or

➡ produces an expansion T′ (and perhaps some side-information)

Example
we can define a strategy R to express that

➡ only unused non-literals are expanded

➡ a priority order on the branches is enforced

➡ a priority order on formula occurrences is enforced
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Definition
fairness

we call a strategy R fair if for any sentence X , the sequence
T1,T2, . . . for X constructed according to R fulfils:

➡ every non-literal formula occurrence in Tn is eventually
expanded on each branch where it occurs

➡ every γ-formula in Tn has the γ-rule applied to it arbitrarily
often on each branch where it occurs

Example
the above described strategy R is not fair

Definition
most general atomic closure substitution

let T be a tableau with branches τ1, . . . , τn; for each i , Ai and ¬Bi

are pairs of literals on τi ; suppose σ is a mgu of the“unification
problem”{A1 = B1, . . . ,An = Bn}; we call σ a most general
atomic closure substitution
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Completeness

Theorem
Completeness

Let R be any fair tableau strategy. If X is a valid sentence of L, X
has a tableau proof which fulfils:

➡ all tableau expansion rules applications come first and are
according to rule R

➡ a single tableau substitution rule follows, using a substitution
σ that is a most general atomic closure substitution
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Summary

➡ unification

➡ unification algorithm by transformation

➡ free-variable semantic tableaux

➡ refinements of free-variable tableaux

➡ tableau strategy, fairness

➡ soundness & completeness
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