Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU) ${ }^{1} \quad$ Christian Vogt (VU) ${ }^{2}$

${ }^{1}$ georg.moser@uibk.ac.at office hours: Thursday $1 \mathrm{pm}-3 \mathrm{pm}$
${ }^{2}$ christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Deductive Proofs

A deductive proof is a sequence of statements, such that the truth of some hypothesis leads to a truth of a conclusion.

$$
\text { If } H \text {, then } C \text {. }
$$

Theorem

$$
\text { If } n \geq 4, \text { then } 2^{n} \geq n^{2}
$$

Proof

 informalFor $n=4$ correct: $2^{4} \geq 4^{2}$.
For $n \geq 4$: Left hand side (lhs) doubles, if n increases by 1 . The rhs multiplies by $\frac{(n+1)^{2}}{n^{2}}$
If $n \geq 4$, then $\frac{n+1}{n} \leq 1,25$. Hence $\frac{(n+1)^{2}}{n^{2}} \leq 1,5625<2$.

Theorem

If n is the sum of the squares of four positive integers, then $2^{n} \geq n^{2}$.
(1)

$$
n=a^{2}+b^{2}+c^{2}+d^{2} \quad \text { hypothesis }
$$

$$
\begin{equation*}
a \geq 1, b \geq 1, c \geq 1, d \geq 1 \text { hypothesis } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a^{2} \geq 1, b^{2} \geq 1, c^{2} \geq 1, d^{2} \geq 1 \tag{3}
\end{equation*}
$$

(2) and arithmetic
(4)

$$
n \geq 4
$$

(1) and (3)
(5)
$2^{n} \geq n^{2}$
(4) and the previous theorem

Reduction to Definitions

Theorem

Let S be a finite subset of some infinite set U. Let T be the complement of S with respect to U. Then T is infinite.

Proof

- by definition $S \cup T=U$ and S, T disjoint, hence $|S|+|T|=|U|$.
- by assumption S is finite, hence by definition exists n, such that $|S|=n$.
- by assumption U is infinite, hence no number / exists, such that $|U|=I$.
- suppose T is finite.
- exists m, such that $|T|=m$.
- hence $|U|=|S|+|T|=n+m$.
contradiction.

Proof by Contradiction

Proof

- ...
- suppose T is finite.
- exists m, such that $|T|=m$.
- hence $|U|=|S|+|T|=n+m$.
- contradiction.
in general

Hypothesis Negation of Conclusion
Conclusion

Inductions on Natural Numbers

to prove assertion $P(n)$ for all n

- Base: show P for particular number i, usually $i=0$ or $i=1$.
- Step: show that if $P(n)$, then $P(n+1)$.

Principle of Induction

Suppose we can show $P(i)$ and can show that for all $n \geq i, P(n)$ implies $P(n+1)$. Then we can conclude that $P(n)$ is true for all $n \geq i$.

Theorem

If $n \geq 4$, then $2^{n} \geq n^{2}$.

- Base: $n=4$ implies $2^{n}=n^{2}$.
- Step: we have to show: If $2^{n} \geq n^{2}$, then $2^{n+1} \geq(n+1)^{2}$. $\left(2^{n} \geq n^{2}\right.$ induction hypothesis (IH)).
first, we show $2 n^{2} \geq(n+1)^{2}$
we simplify (subtract n^{2})

$$
n^{2} \geq 2 n+1
$$

and simplify (divide by n)

$$
n \geq 2+\frac{1}{n}
$$

now by IH and (\dagger):

$$
2^{n+1}=2 \cdot 2^{n} \geq 2 \cdot n^{2} \geq(n+1)^{2}
$$

More General Forms of Induction on Numbers

course-value induction: to show $P(n+1)$, we may use the truth of

$$
P(i), P(i+1), \ldots, P(n) .
$$

another extension: use several base cases:

$$
P(i), P(i+1), \ldots, P(j) .
$$

several base cases and course-value induction: we may assume

$$
P(i), P(i+1), \ldots, P(n),
$$

to show the step-case $P(n+1)$. Moreover, we may

$$
n \geq j
$$

instead of $n \geq i$.

Principle of Structural Recursion

Definition

recursive definition of trees

- Base: a single node is a tree; this node is called root.
- Step: if $T_{1}, T_{2}, \ldots, T_{k}$ are trees, form a new tree:

1. start with new node N, the root
2. take copies of the trees $T_{1}, T_{2}, \ldots, T_{k}$.
3. add k edges from N to the roots of (the copies of) $T_{1}, T_{2}, \ldots, T_{k}$.

Definition

recursive definition of expressions

- Base: each number, each letter is an expression.
- Step: if E, F are expressions, then $E+F, E \cdot F$, and (E) are expressions.

Principle of Structural Induction

Goal show $P(X)$ for all structures X, defined via a recursive definition.

Principle

- Base: show $P(X)$ for the the structures, constructed without premisses X.
- Step: for X, that is built recursively from $Y_{1}, Y_{2}, \ldots, Y_{k}$ assume IH: $P\left(Y_{1}\right), P\left(Y_{2}\right), \ldots, P\left(Y_{k}\right)$ show $P(X)$ based on IH.

Theorem

Each tree contains exactly one more node than it has edges.
$S(T)$ expresses "If T is a tree and contains n nodes and e edges, then $n=e+1$."

Proof

- Base: Obviously $n=e+1$, if T consists of one node only.
- Step: Suppose T includes T_{1}, \ldots, T_{k} as direct sub-trees.

IH: $S\left(T_{1}\right), \ldots, S\left(T_{k}\right)$ holds
Let n_{1}, \ldots, n_{k} denote the number of nodes in T_{1}, \ldots, T_{k}; and e_{1}, \ldots, e_{k} the number of edges in T_{1}, \ldots, T_{k}.
By IH: for all $i \in[1, k]: n_{i}=e_{i}+1$.

$$
\begin{aligned}
n & =1+n_{1}+\cdots+n_{k}= \\
& =1+\left(e_{1}+1\right)+\cdots+\left(e_{k}+1\right) \\
& =1+\underbrace{\left(e_{1}+\cdots+e_{k}+k\right)}_{\text {number of edges in } T} .
\end{aligned}
$$

on-off switch

Goal

show that the automata A is off after n pushes if and only if (iff) n is even, and is on after n pushes iff n is odd.

Mutual Inductions (on Numbers)

Challenge

the statements: A is off after n pushes iff n is even and A is is on after n pushes iff n is odd. are interdependent.

Mutual Induction

to prove a group of statements $P_{1}(n), \ldots, P_{k}(n)$:

- keep the statements separate
- prove for all statements base and induction step separately.

For on-off switch, we show

- $P_{1}(n)$: The automata A is off after n pushes iff n is even.
- $P_{2}(n)$: The automata A is on after n pushes iff n is odd.
by using mutual induction.
- Base: we have to show $\left(P_{1}(0)\right.$; if $),\left(P_{1}(0)\right.$; only-if $),\left(P_{2}(0)\right.$; if), ($P_{2}(0)$; only-if).
case $\left(P_{1}(0)\right.$; if): we have to show: A is off after 0 pushes, if 0 is even. trivial.
case ($P_{1}(0)$; only-if): we have to show: A is off after 0 pushes, only-if 0 is even; that is A is off implies 0 is even, again trivial.
- Step: we have to show $\left(P_{1}(n+1)\right.$; if $),\left(P_{1}(n+1)\right.$; only-if $)$, $\left(P_{2}(n+1)\right.$; if $),\left(P_{2}(n+1)\right.$; only-if $)$.
$\mathrm{IH}: P_{1}(n)$ and $P_{2}(n)$.
case ($P_{1}(n+1)$; only-if): we have to show: A off after $(n+1)$ pushes implies $n+1$ is even.
assumption: A is off after $n+1$ pushes; hence A is on after n pushes, by IH: (($P_{2}(n)$; only-if $), n$ is odd, hence $n+1$ is even.

Summary

1. Deductive Proofs
2. "If-then" and "if and only-if" Assertions
3. Reduction to Definitions
4. Proofs by Contradiction
5. Induction on Numbers
6. Structural Induction
7. Mutual Induction
