

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Theorem If $n \ge 4$, then $2^n \ge n^2$.			
• Base: $n = 4$ implies $2^n = n^2$.			
Step: we have to show: If $2^n \ge n^2$, then $2^{n+1} \ge (n+1)^2$. $(2^n \ge n^2 \text{ induction hypothesis (IH)}).$			
first, we show $2n^2 \ge (n+1)^2$ (†)			
we simplify (subtract n^2)			
	$n^2 \ge$	2n+1 ,	
and simplify (divide by <i>n</i>)			
$n\geq 2+rac{1}{n}$.			
now by IH and (†):			
$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot n^2 \ge (n+1)^2$.			
		< □ > < @ > < ≧ >	 ₹ • • • • • • • • • • • • • • • • • • •
Deductive Proofs	Reduction to Definitions	Proof by Contradiction	Inductive Proofs
	a . a		

More General Forms of Induction on Numbers

course-value induction: to show P(n + 1), we may use the truth of

$$P(i), P(i+1), \ldots, P(n)$$
.

another extension: use several base cases:

$$P(i), P(i+1), \ldots, P(j)$$
.

several base cases and course-value induction: we may assume

$$P(i), P(i+1), \dots, P(n)$$
,

to show the step-case P(n+1). Moreover, we may

 $n\geq j$,

instead of $n \ge i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

-1

Proof by Contradiction

Inductive Proofs

Definition

recursive definition of trees

- Base: a single node is a tree; this node is called root.
- Step: if T_1, T_2, \ldots, T_k are trees, form a new tree:
 - 1. start with new node N, the root
 - 2. take copies of the trees T_1, T_2, \ldots, T_k .
 - 3. add k edges from N to the roots of (the copies of) T_1, T_2, \ldots, T_k .

Definition

recursive definition of expressions

Base: each number, each letter is an expression.

Reduction to Definitions

Step: if E, F are expressions, then E + F, $E \cdot F$, and (E) are expressions.

Deductive Proofs

Principle of Structural Induction

show P(X) for all structures X, defined via a recursive definition.

Principle

▶ Base: show P(X) for the the structures, constructed without premisses X.

Step: for X, that is built recursively from Y_1, Y_2, \ldots, Y_k assume IH: $P(Y_1), P(Y_2), \ldots, P(Y_k)$ show P(X) based on IH.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

크

is even, and is on after n pushes iff n is odd.

Mutual Inductions (on Numbers)

Challenge

the statements: A is off after n pushes iff n is even and A is is on after n pushes iff n is odd. are interdependent.

Mutual Induction

to prove a group of statements $P_1(n), \ldots, P_k(n)$:

- keep the statements separate
- prove for all statements base and induction step separately.

For on-off switch, we show

- ▶ $P_1(n)$: The automata A is off after n pushes iff n is even.
- ▶ $P_2(n)$: The automata A is on after n pushes iff n is odd.

by using mutual induction.

Deductive Proofs

Reduction to Definitions

Proof by Contradiction

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Inductive Proofs

-1

Base: we have to show (P₁(0); if), (P₁(0); only-if), (P₂(0); if), (P₂(0); only-if).

case $(P_1(0); if)$: we have to show: A is off after 0 pushes, if 0 is even. trivial.

case $(P_1(0); \text{ only-if})$: we have to show: A is off after 0 pushes, only-if 0 is even; that is A is off implies 0 is even, again trivial.

Step: we have to show (P₁(n + 1); if), (P₁(n + 1); only-if), (P₂(n + 1); if), (P₂(n + 1); only-if).

IH: $P_1(n)$ and $P_2(n)$.

case $(P_1(n+1); \text{ only-if})$: we have to show: A off after (n+1) pushes implies n+1 is even.

assumption: A is off after n + 1 pushes; hence A is on after n pushes, by IH: (($P_2(n)$; only-if), n is odd, hence n + 1 is even.

-21

