Logic LVA 703600 VU3
 http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU) $)^{1} \quad$ Christian Vogt (VU) ${ }^{2}$

${ }^{1}$ georg.moser@uibk.ac.at office hours: Thursday $1 \mathrm{pm}-3 \mathrm{pm}$
${ }^{2}$ christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Propositional Logic

"elementary sentences" atomic formulas
"Mountains are high." M
"Snow is white." S
form complex sentences by using connectives

"Mountains are high and snow is white."
 "If mountains are high, then snow is white." $M \rightarrow S$

\Rightarrow How does the truth/falsity of complex sentences depends on the truth/falsity of their atoms?
\Rightarrow Which are true, independent of the status of their atoms?

Syntax of Propositional Logic

infinite set of propositional letters:

$$
P_{1}, P_{2}, \ldots
$$

connectives

\top, \perp	arity 0	constants
\neg	arity 1	
\wedge, \vee, etc.	arity 2	
ite	arity 3	

auxiliary symbols: (and)

Definition

atomic formula
propositional letter, \rceil, \perp

Syntax
Structural Induction
Unique Parsing
Semantics

Definition

the set of propositional formulas \mathbf{P} is the smallest set, such that
\Rightarrow if A is an atomic formula, then $A \in \mathbf{P}$
$\Rightarrow X \in \mathbf{P}$ implies $\neg X \in \mathbf{P}$
$\Rightarrow X, Y \in \mathbf{P}$ implies $(X \circ Y) \in \mathbf{P} \quad$ o binary
alternatively

Definition

Base: if A is an atomic formula, then $A \in \mathbf{P}$
Step: suppose $X, Y \in \mathbf{P}$

$$
\begin{aligned}
& \Rightarrow \neg X \in \mathbf{P} \text { and } \\
& \Rightarrow(X \circ Y) \in \mathbf{P}
\end{aligned}
$$

Theorem

every formula in \mathbf{P} has property \mathbf{Q} if
Base: every atomic formula has property \mathbf{Q}
Step: $\quad \Rightarrow$ if X has property \mathbf{Q}, so does $\neg X$ \Rightarrow if X and Y have property \mathbf{Q}, so does $(X \circ Y)$

Theorem

principle of structural recursion

there is exactly one function f defined on \mathbf{P} such that
Base: value of f is specified for atoms
Step: \Rightarrow value of f on $\neg X$ is specified in terms of value of f on X
\Rightarrow value of f on $(X \circ Y)$ is specified in terms of value of f on X and Y

Unique Parsing

Theorem

every propositional formula is in exactly one of the following categories:
\Rightarrow atomic
$\Rightarrow \neg X$, for unique X
$\Rightarrow(X \circ Y)$, for unique \circ and unique X and Y

Proof

\Rightarrow show that any formula in \mathbf{P} falls in one of the categories; Exercise 2.2.3
\Rightarrow show uniqueness: Exercise 2.2.6 and 2.2.8

Subformulas

Definition

\Rightarrow immediate subformulas
\Rightarrow an atomic formula has no immediate subformulas
$\Rightarrow X$ is the only immediate subformula of $\neg X$
$\Rightarrow X$ and Y are the only immediate subformulas of $(X \circ Y)$
\Rightarrow sets of subformulas
the set of subformulas of X is the smallest set containing X and with each member, the immediate subformulas of that member
$\Rightarrow X$ is called an improper subformula of itself.

Optional Exercise

transform the definition of subformulas into a recursive one.

Semantics of Propositional Logic

$\operatorname{Tr}:=\{\mathbf{t}, \mathbf{f}\}$; interpretation of \neg as a mapping $\neg: \operatorname{Tr} \rightarrow \operatorname{Tr}:$

$$
\neg(\mathbf{t}):=\mathbf{f} \quad \neg(\mathbf{f}):=\mathbf{t}
$$

binary connectives

		Primary								Secondary		
		\wedge	\vee	\rightarrow	\leftarrow	\uparrow	\downarrow	\nrightarrow	\nleftarrow	\equiv	$\not \equiv$	
\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	
\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{t}	
\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	

ternary connectives

$$
\operatorname{ite}(X, Y, Z) \equiv((X \wedge Y) \vee(\neg X \wedge Z))
$$

Definition

a Boolean valuation is a mapping $v: \mathbf{P} \rightarrow \mathbf{T r}$
fulfilling

$$
\begin{aligned}
& \Rightarrow v(\top)=\mathbf{t} \quad v(\perp)=\mathbf{f} \\
& \Rightarrow v(\neg X)=\neg v(X) \\
& \Rightarrow v(X \circ Y)=v(X) \circ v(Y), \circ \text { binary. }
\end{aligned}
$$

Theorem

$$
\text { for each mapping } f
$$

$$
f: \text { propositional letters } \rightarrow \mathbf{T r}
$$

exists a Boolean valuation v with $f\left(P_{i}\right)=v\left(P_{i}\right)$

Theorem

$P \in S$, then

$$
v_{1}(X)=v_{2}(X) \quad \text { if } X \text { contains only letters from } S
$$

Boolean valuations are uniquely determined by the valuations of the occurring atoms

Example

v_{1}, v_{2} are valuations with $v_{1}(P)=v_{2}(P)$, for all

Definition

decidable

P is a decision procedure for W if, for every input

$$
\begin{array}{lll}
P & \text { stops with output yes } & x \in W \\
& \text { stops with output no } & x \notin W
\end{array}
$$

if there is a decision procedure: W decidable

Theorem

the set of tautologies is decidable

Proof

\Rightarrow Boolean valuations are uniquely determined by the valuations of the occurring atoms
\Rightarrow suppose X contains n letters, 2^{n} valuations exist
\Rightarrow test with truth-tables

Definition

a set S is satisfiable, if there exists some v, such that for all $X \in S, v(X)=\mathbf{t}$

Theorem

X is a tautology iff $\{\neg X\}$ is not satisfiable.

Definition

\Rightarrow we say \bullet is the dual of \circ if for x, y ranging over $\operatorname{Tr}: \quad \neg(x \circ y)=(\neg x \bullet \neg y)$
example: \vee is dual to \wedge
\Rightarrow obtain X^{d} by

1. replacing every \top in X with \perp
2. replacing every binary symbol in X by its dual
$\Rightarrow X^{d}$ is called the dual formula of X

Summary

\Rightarrow Syntax of Propositional Logic
\Rightarrow Unique Parsing Theorem
\Rightarrow Semantics of Propositional Logic
\Rightarrow Boolean Valuations
\Rightarrow Propositional Logic is Decidable

