Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)¹ Christian Vogt (VU)²

> 1georg.moser@uibk.ac.at office hours: Thursday 1pm-3pm

> ²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

> > Autumn 2005

Propositional Logic

"elementary sentences" atomic formulas

> "Mountains are high." "Snow is white."

form complex sentences by using connectives

"Mountains are high and snow is white." $M \wedge S$ "If mountains are high, then snow is white."

→ How does the truth/falsity of complex sentences depends on the truth/falsity of their atoms?

Semantics

➡ Which are true, independent of the status of their atoms?

◆ロト ◆園 ト ◆夏 ト ◆夏 ト ・夏 ・ からの Tautology

Summary

Valuations

Syntax of Propositional Logic

Semantics

Unique Parsing

infinite set of propositional letters:

 $P_1, P_2, ...$

connectives

Structural Induction

Syntax

Τ. ⊥ arity 0 constants arity 1 \wedge , \vee , etc. arity 2 arity 3 ite

auxiliary symbols: (and)

Definition

atomic formula

propositional letter, \top , \bot

4日 + 4回 ト 4 三 ト 4 三 り 9 0 0

Definition

Structural Induction

Syntax

the set of propositional formulas P is the smallest set, such that

- \rightarrow if A is an atomic formula, then $A \in \mathbf{P}$
- \rightarrow $X \in \mathbf{P}$ implies $\neg X \in \mathbf{P}$
- \rightarrow $X, Y \in \mathbf{P}$ implies $(X \circ Y) \in \mathbf{P}$ binary

Unique Parsing

alternatively

Definition

Base: if A is an atomic formula, then $A \in \mathbf{P}$

Step: suppose $X, Y \in \mathbf{P}$

- $\rightarrow \neg X \in \mathbf{P}$ and
- \rightarrow $(X \circ Y) \in \mathbf{P}$

definitions are equivalent; proof by structural induction

Theorem

principle of structural induction

every formula in P has property Q if

Base: every atomic formula has property Q

Step: \rightarrow if X has property **Q**, so does $\neg X$

 \rightarrow if X and Y have property **Q**, so does $(X \circ Y)$

Theorem

principle of structural recursion

there is exactly one function f defined on P such that

Base: value of f is specified for atoms

Step: \Rightarrow value of f on $\neg X$ is specified in terms of value of f

 \rightarrow value of f on $(X \circ Y)$ is specified in terms of value of f on X and Y

Unique Parsing

Theorem

every propositional formula is in exactly one of the following categories:

- atomic
- $\rightarrow \neg X$, for unique X
- \rightarrow $(X \circ Y)$, for unique \circ and unique X and Y

Proof

- show that any formula in P falls in one of the categories; Exercise 2.2.3
- ⇒ show uniqueness: Exercise 2.2.6 and 2.2.8

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Syntax

Structural Induction

Unique Parsing

Semantics

Valuations Tautology

◆ロ > ◆昼 > ◆ 種 > ● ● りへの

Summary

Structural Induction Syntax

Unique Parsing

Semantics

Valuations

Tautology

Summary

Subformulas

Definition

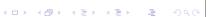
- immediate subformulas
 - → an atomic formula has no immediate subformulas
 - \rightarrow X is the only immediate subformula of $\neg X$
 - \rightarrow X and Y are the only immediate subformulas of $(X \circ Y)$
- sets of subformulas

the set of subformulas of X is the smallest set containing X and with each member, the immediate subformulas of that member

→ X is called an improper subformula of itself.

Optional Exercise

transform the definition of subformulas into a recursive one.



Semantics of Propositional Logic

 $\mathsf{Tr} := \{\mathsf{t}, \mathsf{f}\}; \mathsf{interpretation} \mathsf{ of } \neg \mathsf{ as a mapping } \neg \mathsf{: } \mathsf{Tr} \to \mathsf{Tr} \mathsf{:}$

$$\neg(t) := f \qquad \neg(f) := t$$

binary connectives

		Primary									Secondary	
		\wedge	V	\rightarrow	←	1	↓	\rightarrow	+	=	#	
t	t	t	t	t	t	f	f	f	f	t	f	
t	f	f	t	f	t	t	f	t	f	f	t	
f	t	f	t	t	f	t	f	f	t	f	t	
f	f	f	f	t	t	t	t	f	f	t	f	

ternary connectives

$$ite(X, Y, Z) \equiv ((X \land Y) \lor (\neg X \land Z))$$

Syntax Structural Induction Unique Parsing Valuations Syntax Structural Induction Unique Parsing Valuations

Definition

a Boolean valuation is a mapping $v \colon \mathbf{P} \to \mathbf{Tr}$

fulfilling

- \rightarrow $v(\top) = \mathbf{t}$ $v(\bot) = \mathbf{f}$
- \rightarrow $v(\neg X) = \neg v(X)$
- \rightarrow $v(X \circ Y) = v(X) \circ v(Y)$, \circ binary.

Theorem

for each mapping f

f: propositional letters \rightarrow **Tr**

exists a Boolean valuation v with $f(P_i) = v(P_i)$

Theorem

 v_1, v_2 are valuations with $v_1(P) = v_2(P)$, for all

 $P \in \mathcal{S}$, then

 $v_1(X) = v_2(X)$ if X contains only letters from S

Valuations

Tautology

₽ 990 Summary

Syntax Structural Induction Unique Parsing

Semantics

Valuations

Definition |

Syntax

X is a tautology if $v(X) = \mathbf{t}$ for every v

Semantics

Definition

Structural Induction

decidable

P is a decision procedure for W if, for every input

Unique Parsing

P stops with output *yes* $x \in W$ stops with output no $x \notin W$

if there is a decision procedure: W decidable

Theorem

the set of tautologies is decidable

Proof

- ➡ Boolean valuations are uniquely determined by the valuations of the occurring atoms
- \rightarrow suppose X contains n letters, 2^n valuations exist
- test with truth-tables

Boolean valuations are uniquely determined by the valuations of the occurring atoms

consider $v: \mathbf{P} \to \mathbf{Tr}$ such that

$$v(P) = \mathbf{t}$$
 $v(Q) = \mathbf{f}$ $v(R) = \mathbf{f}$ $v(X) = \mathbf{f}$ if $X \notin \{P, Q, R\}$

Hence

$$v((P \uparrow \neg Q) \to R) = v(P \uparrow \neg Q) \to v(R)$$

$$= (v(P) \uparrow v(\neg Q)) \to v(R)$$

$$= (v(P) \uparrow \neg v(Q)) \to v(R)$$

$$= (\mathbf{t} \uparrow \neg \mathbf{f}) \to \mathbf{f}$$

$$= (\mathbf{t} \uparrow \mathbf{t}) \to \mathbf{f}$$

$$= \mathbf{f} \to \mathbf{f} = \mathbf{t}$$

outermost brackets are dropped. Convention:

Definition

a set S is satisfiable, if there exists some v, such that for all $X \in S$, $v(X) = \mathbf{t}$

Theorem

X is a tautology iff $\{\neg X\}$ is not satisfiable.

Definition

⇒ we say • is the dual of o if

for x, y ranging over **Tr**:
$$\neg(x \circ y) = (\neg x \bullet \neg y)$$

example: \vee is dual to \wedge

- \rightarrow obtain X^d by
 - 1. replacing every \top in X with \bot
 - 2. replacing every binary symbol in X by its dual
- \rightarrow X^d is called the dual formula of X

Syntax	Structural Induction	Unique Parsing	Semantics	Valuations	Tautology	Summary					
Summary											
⇒ Syntax of Propositional Logic											
	→ Unique Parsir	ng Theorem									

- → Semantics of Propositional Logic
- → Boolean Valuations
- → Propositional Logic is Decidable

