The Replacement Theorem

Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU) ${ }^{1} \quad$ Christian Vogt (VU) ${ }^{2}$

> 1 georg.moser@uibk.ac.at office hours: Thursday 1 pm-3pm
> ${ }^{2}$ christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Logic LVA 703600	G. Moser	1

Theorem

Let $F(P), X, Y$ be formulas, v a valuation. If $v(X)=v(Y)$ then $v(F(X))=v(F(Y))$.
Proof
call $F(P)$ good if $v(X)=v(Y)$ implies $v(F(X))=v(F(Y))$ by structural induction we show that every formula is good:

- Base: trivial
\Rightarrow Step: case $F(P)=G(P) \circ H(P)$; assume $v(X)=v(Y)$:

$$
\begin{array}{rlrl}
v(F(X)) & =v(G(X) \circ H(X)) & & \text { definition of } F \\
& =v(G(X)) \circ v(H(X)) & & \text { definition of } v \\
& =v(G(Y)) \circ v(H(Y)) & & \mathbb{H} \\
& =v(G(Y) \circ H(Y))=v(F(Y)) &
\end{array}
$$

similar for case $F(P)=\neg G(P)$

Definition let $F\left(A_{1}, \ldots, A_{n}\right)$ be a formula; propositional letters are among A_{1}, \ldots, A_{n}

$$
F\left(X_{1}, \ldots, X_{n}\right): \Leftrightarrow F\left(A_{1}, \ldots, A_{n}\right) \frac{X_{1}, \ldots, X_{n}}{A_{1}, \ldots, A_{n}}
$$

Example

suppose $F(P)$ is $(P \rightarrow Q) \vee \neg P ; X$ is $(P \wedge R)$:

$$
F(X)=((P \wedge R) \rightarrow Q) \vee \neg(P \wedge R)
$$

Theorem If $X \equiv Y$ is a tautology, so is $F(X) \equiv F(Y)$.

Proof

$X \equiv Y$ is a tautology; v an arbitrary valuation:
$\Rightarrow X \equiv Y$ implies $v(X \equiv Y)=\mathbf{t} \quad$ by Exercise 2.4.4: $v(X)=v(Y)$
$\Rightarrow v(F(X))=v(F(Y)) \quad$ previous Theorem
$\Rightarrow v(F(X) \equiv F(Y))=\mathbf{t} \quad$ Exercise
suppose $F(A)=((\neg P \vee Q) \wedge(R \uparrow A))$; as $(\neg P \vee Q) \equiv(P \rightarrow Q)$:

$$
((\neg P \vee Q) \wedge(R \uparrow(\neg P \vee Q))) \equiv((\neg P \vee Q) \wedge(R \uparrow(P \rightarrow Q)))
$$

Definition

negation normal form (NNF)
\Rightarrow all negation symbols occur in front of propositional letters
NB: every formula can be put into NNF

Uniform Notation

\Rightarrow basic binary connectives: all Primary Connectives
\Rightarrow all Secondary Connectives are defined
$\Rightarrow \operatorname{group}(X \circ Y)$ and $\neg(X \circ Y)$:
Conjunctive

α	α_{1}	α_{2}
$X \wedge Y$	X	Y
$\neg(X \vee Y)$	$\neg X$	$\neg Y$
$\neg(X \rightarrow Y)$	X	$\neg Y$
$\neg(X \leftarrow Y)$	$\neg X$	Y
$\neg(X \uparrow Y)$	X	Y
$X \downarrow Y$	$\neg X$	$\neg Y$
$X \nleftarrow Y$	X	$\neg Y$
$X \nleftarrow Y$	$\neg X$	Y

Disjunctive		
β β_{1} β_{2} $\neg(X \wedge Y)$ $\neg X$ $\neg Y$ $X \vee Y$ X Y $X \rightarrow Y$ $\neg X$ Y $X \leftarrow Y$ X $\neg Y$ $X \uparrow Y$ $\neg X$ $\neg Y$ $\neg(X \downarrow Y)$ X Y $\neg(X \nrightarrow Y)$ $\neg X$ Y $\neg(X \nvdash Y)$ X $\neg Y$		

Theorem
$\Rightarrow v(\alpha)=v\left(\alpha_{1}\right) \wedge v\left(\alpha_{2}\right)$
$\Rightarrow v(\beta)=v\left(\beta_{1}\right) \vee v\left(\beta_{2}\right)$

Theorem

Principle of Structural Induction
Every propositional formula has property \mathbf{Q}, if
\Rightarrow Basis: for every atomic formula A : A and $\neg A$ have property \mathbf{Q}
\Rightarrow Step:
$\Rightarrow X$ has property $\mathbf{Q} \Longrightarrow \neg \neg X$ has property \mathbf{Q}
$\Rightarrow \alpha_{1}, \alpha_{2}$ have property $\mathbf{Q} \Longrightarrow \alpha$ has property \mathbf{Q}
$\Rightarrow \beta_{1}, \beta_{2}$ have property $\mathbf{Q} \Longrightarrow \beta$ has property \mathbf{Q}
Proof
by (original) principle of structural induction
G. Moser

König's Lemma

A tree that is finitely branching (i.e., each node has a finite number of children) must have an infinite branch.

$\Rightarrow\left[X_{1}, \ldots, X_{n}\right]$ is the generalised disjunction of X_{1}, \ldots, X_{n}
\Rightarrow for valuation v, we require $v\left(\left[X_{1}, \ldots, X_{n}\right]\right)=\mathbf{t}$ iff there exists i with $v\left(X_{i}\right)=\mathbf{t}$
$\Rightarrow\left\langle X_{1}, \ldots, X_{n}\right\rangle$ is the generalised conjunction of X_{1}, \ldots, X_{n}
\Rightarrow for valuation v, we require $v\left(\left\langle X_{1}, \ldots, X_{n}\right\rangle\right)=\mathbf{t}$ iff for all i : $v\left(X_{i}\right)=\mathbf{t}$
note: $v([])=\mathbf{f} ; v(\langle \rangle)=\mathbf{t}$

Definition

clause set
\Rightarrow a literal is $P_{i}, \neg P_{i}, \top, \perp$
\Rightarrow a clause is $\left[X_{1}, \ldots, X_{n}\right]$ such that each X_{i} is a literal
\Rightarrow a clause set (or formula in CNF, or in clause form) is $\left\langle C_{1}, \ldots, C_{n}\right\rangle$ such that each C_{i} is a clause
loop
suppose $S=\left\langle D_{1}, \ldots, D_{k}\right\rangle$; select D_{i} not a clause
\Rightarrow select N in $D_{i} ; N$ non-literal
$\Rightarrow N=\neg \top \Rightarrow$ replace N by \perp
$\Rightarrow N=\neg \perp \Rightarrow$ replace N by \top
$\Rightarrow N=\neg \neg Z \Rightarrow$ replace N by Z
$\Rightarrow N$ is β-formula replace N by β_{1}, β_{2}
$\Rightarrow N$ is α-formula replace D_{i} by $D_{i}\left(\alpha_{1}\right)$ and $D_{i}\left(\alpha_{2}\right)$ $D_{i}\left(\alpha_{i}\right)$ is D_{i} with N replaced by α_{i}

Definition

clause set reduction rules

$$
\frac{\neg \neg Z}{Z} \quad \frac{\neg \top}{\perp} \quad \frac{\neg \perp}{\top} \quad \frac{\beta}{\beta_{1}} \quad \frac{\alpha}{\alpha_{1} \mid \alpha_{2}}
$$

Lemma

If S is a conjunction of disjunctions, and one of the clause set reduction rules is applied to S, producing S^{*}, then $S \equiv S^{*}$ is a tautology.

Proof

- Exercise 2.8.1
\Rightarrow Replacement Theorem (extended for generalised conjunctions and disjunctions)

Theorem

\Rightarrow The Normal Form Algorithm is correct.
\Rightarrow The Normal Form Algorithm is strongly normalising, i.e., no matter what choice is made, it terminates.

Proof

(of strong normalisation)
\Rightarrow define the rank function r for generalised disjunctions
\Rightarrow fix a choice-sequence, associate with produced disjunctions their rank
\Rightarrow order the set of ranks in a (finitely branching) tree
\Rightarrow use König's Lemma

Definition

dual clause set

\Rightarrow a dual clause is $\left\langle X_{1}, \ldots, X_{n}\right\rangle$ such that each X_{i} is a literal
\Rightarrow a dual clause set (or formula in DNF, or in dual clause form) is $\left[D_{1}, \ldots, D_{n}\right.$] such that each D_{i} is a dual clause

Definition

dual clause set reduction rules

$$
\frac{\neg \neg Z}{Z} \quad \frac{\neg \top}{\perp} \quad \frac{\neg \perp}{\top} \quad \frac{\alpha}{\alpha_{1}} \quad \frac{\beta}{\beta_{1} \mid \beta_{2}}
$$

Summary

\Rightarrow the Replacement Theorem
\Rightarrow uniform notation
= König's Lemma

- normal forms: clause form \& dual clause form
\Rightarrow normal form implementations

