Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)¹ Christian Vogt (VU)²

¹georg.moser@uibk.ac.at
office hours: Thursday 1pm-3pm

²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

The Replacement Theorem

Definition let $F(A_1, ..., A_n)$ be a formula; propositional letters are among $A_1, ..., A_n$

$$F(X_1,\ldots,X_n):\Leftrightarrow F(A_1,\ldots,A_n)\frac{X_1,\ldots,X_n}{A_1,\ldots,A_n}$$

Example

suppose F(P) is $(P \rightarrow Q) \lor \neg P$; X is $(P \land R)$:

$$F(X) = ((P \land R) \to Q) \lor \neg (P \land R)$$

Theorem

Logic LVA 703600

If $X \equiv Y$ is a tautology, so is $F(X) \equiv F(Y)$.

G. Moser

Logic LVA 703600 G. Moser 1

Theorem

Let F(P), X, Y be formulas, v a valuation. If

v(X) = v(Y) then v(F(X)) = v(F(Y)).

Proof

call F(P) good if v(X) = v(Y) implies v(F(X)) = v(F(Y))

by structural induction we show that every formula is good:

- **→** Base: trivial
- **Step**: case $F(P) = G(P) \circ H(P)$; assume v(X) = v(Y):

$$v(F(X)) = v(G(X) \circ H(X))$$
 definition of F
 $= v(G(X)) \circ v(H(X))$ definition of v
 $= v(G(Y)) \circ v(H(Y))$ IH
 $= v(G(Y) \circ H(Y)) = v(F(Y))$

similar for case $F(P) = \neg G(P)$

Proof (of the Replacement Theorem)

 $X \equiv Y$ is a tautology; v an arbitrary valuation:

- → $X \equiv Y$ implies $v(X \equiv Y) = \mathbf{t}$ by Exercise 2.4.4: v(X) = v(Y)
- ightharpoonup v(F(X)) = v(F(Y)) previous Theorem
- $ightharpoonup v(F(X) \equiv F(Y)) = \mathbf{t}$ Exercise

suppose $F(A) = ((\neg P \lor Q) \land (R \uparrow A))$; as $(\neg P \lor Q) \equiv (P \to Q)$:

$$((\neg P \lor Q) \land (R \uparrow (\neg P \lor Q))) \equiv ((\neg P \lor Q) \land (R \uparrow (P \to Q)))$$

Definition

negation normal form (NNF)

→ all negation symbols occur in front of propositional letters

NB: every formula can be put into NNF

Logic LVA 703600 G. Moser 3 Logic LVA 703600 G. Moser G. Moser

Uniform Notation

- **⇒** basic binary connectives: all Primary Connectives
- all Secondary Connectives are defined
- ightharpoonup group $(X \circ Y)$ and $\neg (X \circ Y)$:

Conjunctive

	Conjunctive		
α_1	α_2		
Χ	Y		
$\neg X$	$\neg Y$		
Χ	$\neg Y$		
$\neg X$	Y		
Χ	Y		
$\neg X$	$\neg Y$		
Χ	$\neg Y$		
$\neg X$	Y		
	X ¬X X ¬X X X X		

Disjunctive

2 10 3 411 5 511 5		
β	β_1	β_2
$\neg(X \land Y)$	$\neg X$	$\neg Y$
$X \vee Y$	X	Y
$X \rightarrow Y$	$\neg X$	Y
$X \leftarrow Y$	X	$\neg Y$
$X \uparrow Y$	$\neg X$	$\neg Y$
$\neg(X \downarrow Y)$	X	Y
$\neg(X \not\rightarrow Y)$	$\neg X$	Y
$\neg (X \not\leftarrow Y)$	X	$\neg Y$

Theorem

for every valuation v, for all α - and β -formulas

- \rightarrow $v(\alpha) = v(\alpha_1) \wedge v(\alpha_2)$
- \rightarrow $v(\beta) = v(\beta_1) \vee v(\beta_2)$

Theorem

Principle of Structural Induction

Every propositional formula has property Q, if

- ightharpoonup Basis: for every atomic formula A: A and $\neg A$ have property **Q**
- → Step:
 - \rightarrow X has property $\mathbf{Q} \Longrightarrow \neg \neg X$ has property \mathbf{Q}
 - $\rightarrow \alpha_1, \alpha_2$ have property $\mathbf{Q} \Longrightarrow \alpha$ has property \mathbf{Q}
 - $\Rightarrow \beta_1, \beta_2$ have property $\mathbf{Q} \Longrightarrow \beta$ has property \mathbf{Q}

by (original) principle of structural induction

Logic LVA 703600

Theorem

Logic LVA 703600

Principle of Structural Recursion

There is exactly one function f defined on \mathbf{P} such that

ightharpoonup Basis: the value of f is explicitly defined on A and $\neg A$, A atomic

G. Moser

- → Step:
 - \rightarrow $f(\neg\neg X)$ is defined in terms of f(X)
 - \rightarrow $f(\alpha)$ is defined in terms of $f(\alpha_1), f(\alpha_2)$
 - \rightarrow $f(\beta)$ is defined in terms of $f(\beta_1)$, $f(\beta_2)$

Example

rank

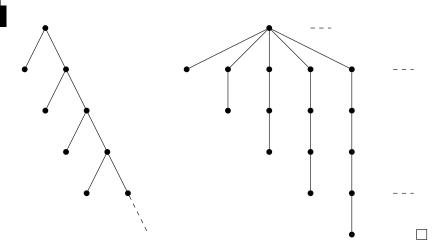
- Base: $r(A) = r(\neg A) = 0$; $r(\top) = r(\bot) = 1$; $r(\neg \top) = r(\neg \bot) = 0$
- ⇒ Step: $r(\neg \neg Z) = r(Z) + 1$; $r(\alpha) = r(\alpha_1) + r(\alpha_2) + 1$; $r(\beta) = r(\beta_1) + r(\beta_2) + 1$

König's Lemma

G. Moser

A tree that is finitely branching (i.e., each node has a finite number of children) must have an infinite branch.

Proof



Logic LVA 703600 G. Moser 7 Logic LVA 703600

- $[X_1, \ldots, X_n]$ is the generalised disjunction of X_1, \ldots, X_n
- \rightarrow for valuation v, we require $v([X_1, \dots, X_n]) = \mathbf{t}$ iff there exists *i* with $v(X_i) = \mathbf{t}$
- $\langle X_1, \dots, X_n \rangle$ is the generalised conjunction of X_1, \dots, X_n
- \rightarrow for valuation v, we require $v(\langle X_1, \dots, X_n \rangle) = \mathbf{t}$ iff for all i: $v(X_i) = \mathbf{t}$

note: $v([]) = \mathbf{f}$; $v(\langle \rangle) = \mathbf{t}$

Definition

clause set

- \Rightarrow a literal is $P_i, \neg P_i, \top, \bot$
- \rightarrow a clause is $[X_1, \dots, X_n]$ such that each X_i is a literal
- ⇒ a clause set (or formula in CNF, or in clause form) is $\langle C_1, \ldots, C_n \rangle$ such that each C_i is a clause

Logic LVA 703600 G. Moser

Lemma If S is a conjunction of disjunctions, and one of the clause set reduction rules is applied to S, producing S^* , then $S \equiv S^*$ is a tautology.

Proof

- → Exercise 2.8.1
- ➡ Replacement Theorem (extended for generalised conjunctions and disjunctions)

Theorem

- → The Normal Form Algorithm is correct.
- The Normal Form Algorithm is strongly normalising, i.e., no matter what choice is made, it terminates.

G. Moser

Definition

Normal Form Algorithm

 $S := \langle [X] \rangle$ dool

suppose $S = \langle D_1, \dots, D_k \rangle$; select D_i not a clause

- \rightarrow select N in D_i ; N non-literal
- \rightarrow $N = \neg \top \Rightarrow$ replace N by \bot
- \rightarrow $N = \neg \perp \Rightarrow$ replace N by \top
- \rightarrow $N = \neg \neg Z \Rightarrow \text{replace } N \text{ by } Z$
- \rightarrow N is β -formula replace N by β_1, β_2
- \rightarrow N is α -formula replace D_i by $D_i(\alpha_1)$ and $D_i(\alpha_2)$ $D_i(\alpha_i)$ is D_i with N replaced by α_i

Definition

9

clause set reduction rules

$$\frac{\neg \neg Z}{Z}$$
 $\frac{\neg \top}{\bot}$ $\frac{\neg \bot}{\top}$

$$\frac{\neg \top}{\bot}$$

$$\frac{\neg \perp}{\top}$$

$$\frac{\alpha}{\alpha_1|\alpha}$$

Logic LVA 703600 G. Moser

Proof (of strong normalisation)

- \rightarrow define the rank function r for generalised disjunctions
- ix a choice-sequence, associate with produced disjunctions their rank
- order the set of ranks in a (finitely branching) tree
- use König's Lemma

Definition

dual clause set

- ightharpoonup a dual clause is $\langle X_1, \dots, X_n \rangle$ such that each X_i is a literal
- ⇒ a dual clause set (or formula in DNF, or in dual clause form) is $[D_1, \ldots, D_n]$ such that each D_i is a dual clause

Definition

dual clause set reduction rules

$$\frac{\neg\neg Z}{Z}$$

$$\frac{\neg \top}{\Box}$$

$$\frac{\neg \bot}{\top}$$

$$\frac{\alpha}{\alpha_1}$$

$$\frac{\beta}{\beta_1|\beta_2}$$

Logic LVA 703600

Logic LVA 703600

11

G. Moser

12

Summary

- ightharpoonup the Replacement Theorem
- uniform notation
- ➡ König's Lemma
- → normal forms: clause form & dual clause form
- → normal form implementations

Logic LVA 703600 G. Moser 13