
Logic LVA 703600 VU3
http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)1 Christian Vogt (VU)2

1georg.moser@uibk.ac.at

office hours: Thursday 1pm–3pm

2christian.vogt@uibk.ac.at

office hours: Tuesday 9am–11am

Autumn 2005

Logic LVA 703600 G. Moser 1

The Replacement Theorem

Definition
let F (A1, . . . ,An) be a formula; propositional letters

are among A1, . . . ,An

F (X1, . . . ,Xn) :⇔ F (A1, . . . ,An)
X1,...,Xn

A1,...,An

Example
suppose F (P) is (P → Q) ∨ ¬P; X is (P ∧ R):

F (X ) = ((P ∧ R)→ Q) ∨ ¬(P ∧ R)

Theorem
If X ≡ Y is a tautology, so is F (X ) ≡ F (Y ).

Logic LVA 703600 G. Moser 2

Theorem
Let F (P), X , Y be formulas, v a valuation. If

v(X ) = v(Y ) then v(F (X )) = v(F (Y )).

Proof

call F (P) good if v(X ) = v(Y ) implies v(F (X )) = v(F (Y ))

by structural induction we show that every formula is good:

➡ Base: trivial

➡ Step: case F (P) = G (P) ◦ H(P); assume v(X ) = v(Y ):

v(F (X )) = v(G (X ) ◦ H(X )) definition of F

= v(G (X )) ◦ v(H(X )) definition of v

= v(G (Y )) ◦ v(H(Y )) IH

= v(G (Y ) ◦ H(Y )) = v(F (Y ))

similar for case F (P) = ¬G (P)

Logic LVA 703600 G. Moser 3

Proof
(of the Replacement Theorem)

X ≡ Y is a tautology; v an arbitrary valuation:

➡ X ≡ Y implies v(X ≡ Y ) = t by Exercise 2.4.4:
v(X ) = v(Y )

➡ v(F (X )) = v(F (Y )) previous Theorem

➡ v(F (X ) ≡ F (Y )) = t Exercise

suppose F (A) = ((¬P ∨Q) ∧ (R ↑ A)); as (¬P ∨Q) ≡ (P → Q):

((¬P ∨ Q) ∧ (R ↑ (¬P ∨ Q))) ≡ ((¬P ∨ Q) ∧ (R ↑ (P → Q)))

Definition
negation normal form (NNF)

➡ all negation symbols occur in front of propositional letters

NB: every formula can be put into NNF

Logic LVA 703600 G. Moser 4



Uniform Notation

➡ basic binary connectives: all Primary Connectives

➡ all Secondary Connectives are defined

➡ group (X ◦ Y ) and ¬(X ◦ Y ):

Conjunctive

α α1 α2

X ∧ Y X Y

¬(X ∨ Y ) ¬X ¬Y

¬(X → Y ) X ¬Y

¬(X ← Y ) ¬X Y

¬(X ↑ Y ) X Y

X ↓ Y ¬X ¬Y

X 6→ Y X ¬Y

X 6← Y ¬X Y

Disjunctive

β β1 β2

¬(X ∧ Y ) ¬X ¬Y

X ∨ Y X Y

X → Y ¬X Y

X ← Y X ¬Y

X ↑ Y ¬X ¬Y

¬(X ↓ Y ) X Y

¬(X 6→ Y ) ¬X Y

¬(X 6← Y ) X ¬Y

Logic LVA 703600 G. Moser 5

Theorem
for every valuation v , for all α- and β-formulas

➡ v(α) = v(α1) ∧ v(α2)

➡ v(β) = v(β1) ∨ v(β2)

Theorem
Principle of Structural Induction

Every propositional formula has property Q, if

➡ Basis: for every atomic formula A: A and ¬A have property Q

➡ Step:

➡ X has property Q =⇒ ¬¬X has property Q
➡ α1, α2 have property Q =⇒ α has property Q
➡ β1, β2 have property Q =⇒ β has property Q

Proof
by (original) principle of structural induction

Logic LVA 703600 G. Moser 6

Theorem
Principle of Structural Recursion

There is exactly one function f defined on P such that

➡ Basis: the value of f is explicitly defined on A and ¬A, A
atomic

➡ Step:

➡ f (¬¬X ) is defined in terms of f (X )
➡ f (α) is defined in terms of f (α1), f (α2)
➡ f (β) is defined in terms of f (β1), f (β2)

Example
rank

➡ Base: r(A) = r(¬A) = 0; r(>) = r(⊥) = 1;
r(¬>) = r(¬ ⊥) = 0

➡ Step: r(¬¬Z ) = r(Z ) + 1; r(α) = r(α1) + r(α2) + 1;
r(β) = r(β1) + r(β2) + 1

Logic LVA 703600 G. Moser 7

König’s Lemma

A tree that is finitely branching (i.e., each node has a finite
number of children) must have an infinite branch.

Proof

Logic LVA 703600 G. Moser 8



➡ [X1, . . . ,Xn] is the generalised disjunction of X1, . . . ,Xn

➡ for valuation v , we require v([X1, . . . ,Xn]) = t iff there exists
i with v(Xi ) = t

➡ 〈X1, . . . ,Xn〉 is the generalised conjunction of X1, . . . ,Xn

➡ for valuation v , we require v(〈X1, . . . ,Xn〉) = t iff for all i :
v(Xi ) = t

note: v([]) = f; v(〈〉) = t

Definition
clause set

➡ a literal is Pi ,¬Pi ,>,⊥
➡ a clause is [X1, . . . ,Xn] such that each Xi is a literal

➡ a clause set (or formula in CNF, or in clause form) is
〈C1, . . . ,Cn〉 such that each Ci is a clause

Logic LVA 703600 G. Moser 9

Definition
Normal Form Algorithm

S := 〈[X ]〉
loop
suppose S = 〈D1, . . . ,Dk〉; select Di not a clause

➡ select N in Di ; N non-literal
➡ N = ¬> ⇒ replace N by ⊥
➡ N = ¬ ⊥ ⇒ replace N by >
➡ N = ¬¬Z ⇒ replace N by Z
➡ N is β-formula replace N by β1, β2

➡ N is α-formula replace Di by Di (α1) and Di (α2)

Di (αi ) is Di with N replaced by αi

Definition
clause set reduction rules

¬¬Z

Z

¬>
⊥

¬ ⊥
>

β

β1

β2

α

α1|α2

Logic LVA 703600 G. Moser 10

Lemma
If S is a conjunction of disjunctions, and one of the

clause set reduction rules is applied to S , producing S∗, then
S ≡ S∗ is a tautology.

Proof

➡ Exercise 2.8.1

➡ Replacement Theorem (extended for generalised conjunctions
and disjunctions)

Theorem

➡ The Normal Form Algorithm is correct.

➡ The Normal Form Algorithm is strongly normalising, i.e., no
matter what choice is made, it terminates.

Logic LVA 703600 G. Moser 11

Proof
(of strong normalisation)

➡ define the rank function r for generalised disjunctions
➡ fix a choice-sequence, associate with produced disjunctions

their rank
➡ order the set of ranks in a (finitely branching) tree
➡ use König’s Lemma

Definition
dual clause set

➡ a dual clause is 〈X1, . . . ,Xn〉 such that each Xi is a literal
➡ a dual clause set (or formula in DNF, or in dual clause form) is

[D1, . . . ,Dn] such that each Di is a dual clause

Definition
dual clause set reduction rules

¬¬Z

Z

¬>
⊥

¬ ⊥
>

α
α1

α2

β

β1|β2

Logic LVA 703600 G. Moser 12



Summary

➡ the Replacement Theorem

➡ uniform notation

➡ König’s Lemma

➡ normal forms: clause form & dual clause form

➡ normal form implementations

Logic LVA 703600 G. Moser 13


