Proof Procedures Semantic Tableau Proof Procedures Semantic Tableau Resolution Summary Resolution Summary

LVA 703600 VU3 Logic

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)¹ Christian Vogt (VU)²

> ¹georg.moser@uibk.ac.at office hours: Thursday 1pm-3pm

> ²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

> > Autumn 2005

Proof Procedures

How-to prove that a given propositional formula is satisfiable or even a tautology?

> natural deduction truth-tables normal forms Hilbert systems binary decision diagrams semantic tableaux Davis-Putnam-Loveland resolution

How-to prove that a given propositional formula is a tautology automatically?

> binary decision diagrams semantic tableaux Davis-Putnam-Loveland resolution

4□ > 4回 > 4 回 > 4 回 > 2 ● 9 0 ○

Proof Procedures

Semantic Tableau

Soundness

Resolution

Summary

Proof Procedures

Semantic Tableau

Soundness

Resolution

Summary

semantic tableaux

- refutational method
 - \rightarrow to prove X, derive contradiction from $\neg X$
- connected to disjunctive normal form (DNF)
- extends to first-order logic (and non-classical logics)

resolution

- refutational method
- connected to conjunctive normal form (CNF)
- extends to first-order logic (and non-classical logics)

NB: binary decision diagrams do not extend to first-order, Davis-Putnam-Loveland does, but poorly

semantic tableau

let $\{A_1, \ldots, A_n\}$ be a set of formulas

→ the one-branch tree

is a tableau for $\{A_1, \ldots, A_n\}$

→ tableau expansion rules

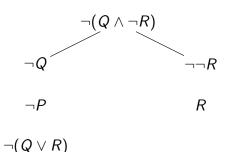
$$\frac{\neg \neg Z}{Z}$$
 $\frac{\neg \top}{\bot}$ $\frac{\neg \bot}{\top}$ $\frac{\alpha}{\alpha_1}$ $\frac{\beta}{\beta_1 | \beta}$

e.g. if $\neg \neg Z$ on a branch, then extend branch with Z

⇒ suppose **T** is a tableau for $\{A_1, \ldots, A_n\}$, **T*** obtained by applying a tableau expansion rule to T, then T^* is a tableau for $\{A_1, ..., A_n\}$ 4□ > 4回 > 4 回 > 4

Example

tableau for $\{P \downarrow (Q \lor R), \neg (Q \land \neg R)\}$



Resolution

Semantic Tableau

tableau proof for

 $(P \rightarrow (Q \rightarrow R))$

 $\neg((Q \rightarrow R) \lor S)$

 $\neg (Q \rightarrow R)$

 $P \vee S$

 $(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \lor S) \rightarrow ((Q \rightarrow R) \lor S))$

 $\neg((P \lor S) \to ((Q \to R) \lor S))$

Soundness

 $\neg((P \to (Q \to R)) \to ((P \lor S) \to ((Q \to R) \lor S)))$

Resolution

Summai

Proof Procedures

tableau proof

Semantic Tableau

- \Rightarrow a branch is closed if X and $\neg X$, or if \bot occur(s) on it
- → a tableau is closed if every branch is closed
- \Rightarrow a tableau proof of X is a closed tableau for $\{\neg X\}$
- in a strict tableau no formula is expanded twice on the same branch

Theorem

soundness of propositional tableau

If X has a tableau proof, then X is a tautology.

Definition

- → a branch is satisfiable if the set of formulas on the branch is satisfiable
- ⇒ a tableau is satisfiable if at least one branch is satisfiable

Theorem

Proof Procedures

Example

Expansion rules preserve satisfiability.

Proof suppose **T** is satisfiable, with satisfiable branch τ ; **T*** is obtained by expansion on branch Θ ; we show: **T*** is satisfiable

- ightharpoonup Case $\tau \neq \Theta$: **T*** is satisfiable as τ is a branch of it
- ⇒ Case $\tau = \Theta$: assume expansion was applied to X; we know: $\nu(X) = \mathbf{t}$
 - ⇒ Subcase $X = \alpha$: Prop. 2.6.1 yields $v(X) = v(\alpha_1) \land v(\alpha_2)$; hence $v(\alpha_1) = v(\alpha_2) = \mathbf{t}$; extension of Θ is satisfiable
 - ▶ Subcase $X = \beta$: Prop. 2.6.1 yields $v(X) = v(\beta_1) \vee v(\beta_2)$; hence $v(\beta_1) = \mathbf{t}$ or $v(\beta_2) = \mathbf{t}$; one of the extensions of Θ is satisfiable
 - Subcases (i) $X = \neg \neg Z$, (ii) $X = \neg \top$, (iii) $X = \neg \bot$: use $v(\neg \neg Z) = v(Z)$, $v(\neg \top) = v(\bot)$ and $v(\neg \bot) = v(\top)$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ からの

Theorem If there is a closed tableau for S, then S is not satisfiable.

Proof suppose S is satisfiable, a closed tableau exists

- → *S* is satisfiable, hence the initial one-branch tableau is satisfiable
- → a closed tableau exists, obtained from the inital tableau
- → thus the closed tableau is satisfiable previous theorem
- contradiction definition of satisfiability

Proof

of soundness theorem

- ightharpoonup a tableau proof of X is a closed tableau for $\{\neg X\}$
- \rightarrow $\{\neg X\}$ is **not** satisfiable
- → no counter-example exists: X is a tautology

resolution expansion rules

$$\frac{\neg \neg Z}{Z}$$

$$\frac{\neg \top}{\bot}$$

$$\frac{\neg \perp}{\top}$$

$$\frac{\beta}{\beta_1}$$

$$\frac{\alpha}{\alpha_1 | \alpha_2}$$

Definition

resolvent

 D_1, D_2 denote disjunctions with $X, \neg X$ occurring as member; the resolvent D of D_1 and D_2 is obtained by

- ightharpoonup deleting all occurrences of X from D_1
- ightharpoonup deleting all occurrences of $\neg X$ from D_2
- combine the resulting disjunctions

F is called trivial resolvent of D, if obtained by deleting all occurrences of \bot in D

Proof Procedures

Semantic Tableau

Soundness

Resolution

Summary

Proof Procedures

Semantic Tableau

Soundness

Resolution

Summary

D follows from D_1, D_2 by the resolution rule if D is the (trivial) resolvent of D_1, D_2 (D')

resolution

let $\{A_1, \ldots, A_n\}$ be a set of formulas

→ the sequence of disjunctions

$$[A_1]$$

$$[A_2]$$

$$\vdots$$

$$[A_n]$$

is a resolution expansion for $\{A_1, \ldots, A_n\}$

⇒ suppose **R** is a resolution expansion for $\{A_1, \ldots, A_n\}$ and **R*** obtained by applying an expansion or resolution rule to **R**, then **R*** is a resolution expansion for $\{A_1, \ldots, A_n\}$

Definition

resolution proof

- → a resolution expansion containing the empty clause, is closed
- ightharpoonup a resolution proof of X is a closed resolution expansion for $\{\neg X\}$

resolution proof of $P \rightarrow (Q \rightarrow P)$

$$[\neg(P \to (Q \to P))] \quad [P] \quad [\neg(Q \to P)] \quad [Q] \quad [\neg P] \quad []$$

NB: there is no analog of strictness for the resolution rule, but a sequence of expansion rules is **strict**, if every disjunction is only expanded once

soundness of propostional resolution

If X has a resolution proof, then X is a tautology.

Proof Procedures Semantic Tableau Soundness Resolution **Summary**

Summary

- proof procedures
- ➡ propositional semantic tableaux
- → tableau implementations
- ➡ propositional tableau soundness
- propositional resolution
- propositional resolution soundness

13

