Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)¹ Christian Vogt (VU)²

> ¹georg.moser@uibk.ac.at office hours: Thursday 1pm-3pm

> ²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

> > Autumn 2005

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

Completeness of a Proof Procedure

recall

- \Rightarrow a branch is closed if X and $\neg X$, or if \bot occur(s) on it
- ⇒ a tableau is closed if every branch is closed and a tableau proof of X is a closed tableau for $\{\neg X\}$

the omission is irrelevant for correctness, but critical for completeness

Completeness for Propositional Tableau

If X is a tautology, X has a tableau proof.

Completeness for Propositional Resolution

If X is a tautology, X has a resolution proof.

Hintikka's Lemma

Definition

propositional Hintikka set

a set **H** is a propositional Hintikka set if

- ightharpoonup for any propositional letter A, not both $A \in \mathbf{H}$ and $\neg A \in \mathbf{H}$
- **→** ⊥∉ **H**, ¬⊤ ∉ **H**
- $\rightarrow \neg \neg Z \in \mathbf{H} \Rightarrow Z \in \mathbf{H}$
- $\rightarrow \alpha \in \mathbf{H} \rightarrow \alpha_1 \in \mathbf{H} \text{ and } \alpha_2 \in \mathbf{H}$
- $\Rightarrow \beta \in \mathbf{H} \Rightarrow \beta_1 \in \mathbf{H} \text{ or } \beta_2 \in \mathbf{H}$

the set $\{P \land (\neg Q \rightarrow R), P, (\neg Q \rightarrow R), \neg \neg Q, Q\}$ is a

Hintikka set

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

$\mathsf{Theorem}$ [

Hintikka's Lemma

Every propositional Hintikka set is satisfiable.

Proof

let **H** be a Hintikka set: define

$$f(A) = \begin{cases} \mathbf{t} & \text{if } A \in \mathbf{H} \\ \mathbf{f} & \text{if } A \notin \mathbf{H} \end{cases}$$

f uniquely extends to a valuation v (recall Prop. 2.4.2, 2.4.3; Exercise 4.2) such that

- → v is well-defined
- $ightharpoonup v(X) = \mathbf{t}$ for any $X \in \mathbf{H}$

structural induction

Propositional Consistency Property

Definition let $\mathcal C$ be a collection of sets; $\mathcal C$ is called propositional consistency property if for each $S \in C$:

- \rightarrow for any propositional letter A, not both $A \in S$ and $\neg A \in S$
- \rightarrow $\bot \notin S$, $\neg \top \notin S$
- $\rightarrow \neg \neg Z \in S \Rightarrow S \cup \{Z\} \in \mathcal{C}$
- $\rightarrow \alpha \in S \rightarrow S \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}$
- $\Rightarrow \beta \in S \Rightarrow S \cup \{\beta_1\} \in \mathcal{C} \text{ or } S \cup \{\beta_2\} \in \mathcal{C}$

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

Propositional Model Existence Theorem

Theorem If $\mathcal C$ is a propositional consistency property, and $S \in \mathcal{C}$, then S is satisfiable.

proof idea

- ightharpoonup show that any $S \in \mathcal{C}$ can be enlarged to $S' \in \mathcal{C}$, such that S'is a Hintikka set
- \rightarrow S' is satisfiable by Hintikka's lemma

proof plan

- \rightarrow show the existence of an extension \mathcal{C}^* of \mathcal{C} , such that \mathcal{C}^* is closed under limits (or chain union)
- \rightarrow define a suitable extension **H** of S, such that **H** is a Hintikka set
- apply Hintikka's lemma

 \mathcal{C} is extendable to a (propositional) consistency property \mathcal{C}^* closed under limits: i.e., if $S_1, S_2, \dots \in \mathcal{C}^*$, $S_1 \subseteq S_2 \subseteq \ldots$, then $\bigcup_i S_i \in \mathcal{C}^*$

 \mathcal{C} a consistency property

- $S \in \mathcal{C}$ implies: for all $S' \subseteq S$, $S' \in \mathcal{C}$ subset closed
- of finite character $S \in \mathcal{C}$ iff for any finite $S' \subseteq S$, $S' \in \mathcal{C}$

Facts:

- \rightarrow C is extendable to a consistency property C' that is subset closed
- $ightharpoonup \mathcal{C}'$ is extendable to a consistency property \mathcal{C}^* of finite character

we show for any finite $S' \subseteq \bigcup_i S_i \in \mathcal{C}^*$: $S' \in \mathcal{C}^*$:

- ightharpoonup let $S'=\{A_1,\ldots,A_k\}$; there exists N such that $A_i\in S_N$ for all i
- ⇒ hence $S' \subseteq S_N$; as C^* is subset closed: $S' \in C^*$

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

let X_1, X_2, \ldots be an enumeration of all propositional formulas

- \Rightarrow $S \subseteq \mathbf{H}$ and $\mathbf{H} \in \mathcal{C}^*$
- ightharpoonup H is maximal in \mathcal{C} , i.e. if $\mathbf{H} \subseteq K$ for $K \in \mathcal{C}^*$, then $\mathbf{H} = K$ ightharpoonup proof sketch: assume $\mathbf{H} \subsetneq K$, derive a contradiction using that \mathcal{C}^* is subset closed
- → H is a Hintikka set
 - ightharpoonup proof sketch: suppose $\alpha \in \mathbf{H} \rightarrow \mathbf{H} \cup \{\alpha_1, \alpha_2\} \in \mathcal{C}^*$ employ maximality $\rightarrow \alpha_1, \alpha_2 \in \mathbf{H}$
- \rightarrow **H** is satisfiable by Hintikka's lemma, hence S is satisfiable

Corollaries

Propositional Compactness

Let S be a set of propositional formulas. If every finite subset of Sis satisfiable, so is S.

a formula Z is called interpolant of $X \rightarrow Y$ if every propositional letter of Z occurs in X and Y, and $X \rightarrow Z$, $Z \rightarrow Y$ are tautologies

Example

- $ightharpoonup (P \lor (Q \land R)) \to (P \lor \neg \neg Q)$ has interpolant $P \lor Q$
- $ightharpoonup (P \land \neg P) \rightarrow Q$ has interpolant \bot

Craig Interpolation

If $X \to Y$ is a tautology, then it has an interpolant.

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

Tableau Completeness

Definition a finite set S of propositional formulas is tableau consistent if there is no closed tableau for S

Lemma the collection of all tableau consistent sets is a consistency property

Completeness of Propositional Tableau

If X is a tautology, then X has a tableau proof.

Proof

- suppose X does not have a tableau proof
- ightharpoonup hence no closed tableau for $\{\neg X\}$ exists, thus $\{\neg X\}$ is tableau consistent
- → hence satisfiable

Model Existence Theorem

Resolution Completeness

let S be a set of disjunctions

- \rightarrow a resolution derivation from S is a sequence of disjunctions, each either a member of S or obtained by an expansion or resolution rule
- \rightarrow let X be a formula; $[X, A_1, \dots, A_n]$ and $[A_1, \dots, A_n]$ are X-enlargements of $[A_1, \ldots, A_n]$; the result of replacing each member of S by an X-enlargement, is an X-enlargement of S
- \rightarrow let S_1, S_2 be sets of disjunctions; S_2 an X-enlargement of S_1 ; if D_1 is resolution derivable from S_1 , then there is an X-enlargement D_2 (of D_1) resolution derivable from S_2

Definition | a finite set $\{X_1, \ldots, X_n\}$ of propositional formulas is resolution consistent if there is no resolution derivation of [] from $\{[X_1], \ldots, [X_n]\}$

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

Lemma the collection of all resolution consistent sets is a consistency property

Proof we verify the conditions of a consistency property

- cases 1), 2) are directly handled by the resolution rule
- case 3, 4) are optional exercises
- ightharpoonup case 5: suppose $\beta \in S$, and $S \cup \{\beta_1\}$ and $S \cup \{\beta_2\}$ are both not resolution consistent; suppose $S = \{\beta, X_1, \dots, X_n\}$

as $S \cup \{\beta_1\}$ is not resolution consistent, there exists a derivation of [] from $\{[X_1], \ldots, [X_n], [\beta], [\beta_1]\}$

in the same way: there exists a derivation of [] from $\{[X_1],\ldots,[X_n],[\beta],[\beta_2]\}$

combining both derivations → there exists a derivation of [] from $\{[X_1], \ldots, [X_n], [\beta], [\beta_1, \beta_2]\}$; contradiction

Completeness of Propositional Resolution

If X is a tautology, then X has a resolution proof.

NB: completeness with restrictions

- → tableau proofs can be restricted to strict tableau, where closure is restricted to atomic formulas
- resolution proofs are restrictable to strict resolution expansion rules, where the resolution rule is only applied to atomic formulas

consequence relation

a formula X is a propositional consequence of a set of formulas S, if X evaluates to \mathbf{t} under each valuation v, such that v satisfies S: we write $S \models_{p} X$

Fact: $S \models_{p} X$ iff there is a finite $S_0 \subseteq S$, such that $S_0 \models_{p} X$

Hintikka's Lemma

Model Existence

Tableau Completeness

Resolution Completeness Strong Soundness & Completeness

Strong Soundness and Completeness

let S be a set of formulas

- ightharpoonup the S-introduction rule for tableau says that any $X \in S$ can be added to any branch
- \rightarrow we write $S \vdash_{pt} X$ if there is a tableau proof of X admitting S-introduction
- \Rightarrow the S-introduction rule for resolution says that any $X \in S$ can be added to a resolution expansion
- ightharpoonup we write $S \vdash_{pr} X$ if there is a closed resolution expansion of $\{\neg X\}$, allowing S-introduction

Theorem For any set S of propositional formulas, and any propositional formula X:

$$S \models_{p} X$$
 iff $S \vdash_{pt} X$ iff $S \vdash_{pr} X$.

Summary

- → Hintikka's lemma
- propositional model existence theorem
- completeness of semantic tableau and resolution
- ...with restrictions
- propositional consequence
- strong soundness and completeness of tableau and resolution

