Logic LVA 703600 VU3

http://cl-informatik.uibk.ac.at/teaching/ws05/logic/

Georg Moser (VU)¹ Christian Vogt (VU)²

¹georg.moser@uibk.ac.at office hours: Thursday 1pm-3pm

²christian.vogt@uibk.ac.at office hours: Tuesday 9am-11am

Autumn 2005

Syntax Substitutions Semantics

Definition

first-order language

fixed part connectives as for propositional logic

quantifiers ∀ for all

∃ there exists

auxiliary symbols ')','(', and ','

variables v_1, v_2, \dots

informally: x, y, z, \dots

variable part relation symbols R

function symbols **F**

constant symbols C

notation $L(\mathbf{R}, \mathbf{F}, \mathbf{C})$ describes the first-order language deter-

mined by R, F, C

inductive definition of terms & formulas

terms, T

any variable is in **T**

any constant is in T

$$t_1,\ldots,t_n\in\mathsf{T}$$

$$f(t_1,\ldots,t_n)\in \mathbf{T}$$

 $f \in \mathbf{F}$, *n*-ary

atomic formulas

$$R(t_1,\ldots,t_n)$$

$$R \in \mathbf{R}$$
, *n*-ary

$$\top$$
, \bot

$$t_1,\ldots,t_n\in\mathsf{T}$$

formulas, Frm

any atomic formula is in Frm

$$A \in \operatorname{\mathsf{Frm}} \twoheadrightarrow \neg A \in \operatorname{\mathsf{Frm}}$$

$$A, B \in \mathsf{Frm} \implies (A \circ B) \in \mathsf{Frm} \quad \circ \mathsf{binary}$$

$$A \in \operatorname{\mathsf{Frm}} \longrightarrow (\forall x) A \in \operatorname{\mathsf{Frm}}$$

$$A \in \mathbf{Frm} \implies (\exists x) A \in \mathbf{Frm}$$

x a variable

Syntax

Substitutions

Semantics

formulas

$$(\forall x)(\forall y)(<(x,y) \to (\exists z)(<(x,z) \land <(z,y)))$$
$$(\forall x)(\forall y)[x < y \to (\exists z)(x < z \land z < y)]$$
$$\forall x, y \ x < y \to \exists z \ (x < z \land z < y)$$

NB: we employ structural induction on terms (and formulas) and structural recursion on terms (and formulas) as proof-principles

free-variable occurrences, fvar(X)

- \rightarrow if A atomic, then fvar(A) is the set of variables occurring in A
- \rightarrow fvar($\neg A$) := fvar(A)
- ightharpoonup fvar($(A \circ B)$) := fvar(A) \cup fvar(B)
- ightharpoonup fvar(($\exists x$)A) := fvar(A) {x}

substitutions

- ⇒ a substitution σ is a mapping σ : $\mathbf{V} \to \mathbf{T}$ from the set of variables to the set of terms \mathbf{T}
- \Rightarrow extend σ to terms:

$$c\sigma := c$$
 $c \in \mathbf{C}$ $f(t_1, \dots, t_n)\sigma := f(t_1\sigma, \dots, t_n\sigma)$ $f \in \mathbf{F}$

$$r(c_1,\ldots,c_n)$$

example: set
$$\sigma$$
: $x \mapsto f(x, y), y \mapsto h(a), z \mapsto g(c, h(x))$
$$j(k(x), y)\sigma = j(k(x)\sigma, y\sigma) = j(k(x\sigma), y\sigma) = j(k(f(x, y)), h(a))$$

 \rightarrow σ, τ substitutions; the composition $\sigma\tau$ of σ and τ is defined as

$$x(\sigma\tau) := (x\sigma)\tau$$

 \rightarrow the domain of σ is $\{x \mid x\sigma \neq x\}$

5

Syntax Substitutions

Semantics

Lemma

- ightharpoonup for any term t: $t(\sigma\tau)=(t\sigma)\tau$ by structural induction
- ightharpoonup composition is associative (i.e. $(\sigma_1\sigma_2)\sigma_3=\sigma_1(\sigma_2\sigma_3)$)

Definition

ightharpoonup if the domain of σ is $\{x_1,\ldots,x_n\}$ and $x_1\sigma=t_1,\ldots,x_n\sigma=t_n$, then we write $\{x_1\mapsto t_1,\ldots,x_n\mapsto t_n\}$ to denote σ

Theorem

set
$$\sigma_1 = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$$
,

 $\sigma_2 = \{y_1 \mapsto s_1, \dots, y_k \mapsto s_k\}$; then the composition $\sigma_1 \sigma_2$ can be written as

$$\{x_1 \mapsto t_1\sigma_2, \ldots, x_n \mapsto t_n\sigma_2, z_1 \mapsto z_1\sigma_2, \ldots, z_m \mapsto z_m\sigma_2\}$$

$$\{z_1,\ldots,z_m\}=\{y_1,\ldots,y_k\}-\{x_1,\ldots,x_n\}$$

◆□▶ ◆□▶ ◆■▶ ◆■● ◆○○○

substitutions on formulas

let σ be a substitution

 \rightarrow define σ_x :

$$y\sigma_x := egin{cases} y\sigma & \text{if } y
eq x \\ x & \text{otherwise} \end{cases}$$

$$P(t_1, ..., t_n)\sigma := P(t_1\sigma, ..., t_n\sigma) \qquad P \in \mathbf{R}, P \text{ } n\text{-ary}$$

$$T\sigma := T \qquad \bot \sigma := \bot$$

$$(\neg A)\sigma := \neg (A\sigma)$$

$$(A \circ B)\sigma := (A\sigma \circ B\sigma) \qquad \circ \text{ binary}$$

$$((\forall x)A)\sigma := (\forall x)(A\sigma_x)$$

$$((\exists x)A)\sigma := (\exists x)(A\sigma_x)$$

Syntax

Substitutions

Semantics

Example

$$\sigma = \{x \mapsto a, y \mapsto b\}$$

$$(\forall x R(x,y) \to \exists y R(x,y)) \sigma = (\forall x R(x,y)) \sigma \to (\exists y R(x,y)) \sigma$$
$$= \forall x (R(x,y)\sigma_x) \to \exists y (R(x,y)\sigma_y)$$
$$= \forall x R(x,b) \to \exists y R(a,y)$$

Definition

substitution σ is free for a formula:

- \rightarrow if A atomic, σ is free for A
- $\rightarrow \sigma$ is free for $A \rightarrow \sigma$ is free for $\neg A$
- $\rightarrow \sigma$ is free for A and $B \rightarrow \sigma$ is free for $(A \circ B)$
- σ_X is free for A and if $y \in \text{fvar}(A)$, $y \neq x$, then $y\sigma$ does not contain $x \rightarrow \sigma$ is free for $(\exists x)A$ and free for $(\forall x)A$

Theorem

Suppose σ is free for A and τ is free for $A\sigma$, then

$$(A\sigma)\tau = A(\sigma\tau)$$

Proof

by structural induction on A

ightharpoonup Base: let $A=P(t_1,\ldots,t_n)$, hence

$$(P(t_1,\ldots,t_n)\sigma)\tau = P((t_1\sigma)\tau,\ldots,(t_n\sigma)\tau) =$$

= $P(t_1(\sigma\tau),\ldots,t_n(\sigma\tau)) = P(\sigma\tau)$

Step: we only consider $A = (\forall x)A_1$ assumptions σ_x is free for A_1 τ_x is free for $A_1\sigma_x$ as $((\forall x)A_1)\sigma = (\forall x)A_1\sigma_x$

$$(A_1\sigma_x)\tau_x = A_1(\sigma_x\tau_x)$$
 by IH

$$A_1(\sigma_x \tau_x) = A_1(\sigma \tau)_x$$
 easy

$$(\underline{((\forall x)A_1)\sigma})\tau = \underline{((\forall x)(A_1\sigma_x))\tau} = (\forall x)(\underline{(A_1\sigma_x)\tau_x}) =$$

$$= (\forall x)(A_1(\underline{\sigma_x\tau_x})) = (\forall x)(A_1(\sigma\tau)_x) = ((\forall x)A_1)(\sigma\tau) \quad \Box$$

Syntax Substitutions Semantics

Definition

domain, models & assignments

model

a model of L(R, F, C) is a pair M = (D, I), s.t.

 $\mathbf{D} \neq \emptyset$ a set, called domain of \mathbf{M}

I a mapping, called interpretation associating

- **⇒** to every $c \in \mathbf{C}$, some $c^{\mathbf{I}} \in \mathbf{D}$
- ightharpoonup to every $f \in \mathbf{F}$, some function $f^{\mathbf{I}} \colon \mathbf{D}^n \to \mathbf{D}$
- ightharpoonup to every $P \in \mathbf{R}$, some relation $P^{\mathbf{I}} \subseteq \mathbf{D}^n$

assignment an assignment in M is a mapping $A: V \to D$; we write v^A instead of A(v)

value each term $t \in L$ is associated a value $t^{I,A}$

- ightharpoonup for $c \in \mathbf{C}$: $c^{\mathbf{I},\mathbf{A}} := c^{\mathbf{I}}$
- \rightarrow for $v \in V$: $v^{I,A} := v^A$
- ightharpoonup for $f \in \mathbf{F}$: $[f(t_1,\ldots,t_n)]^{\mathbf{I},\mathbf{A}}:=f^{\mathbf{I}}(t_1^{\mathbf{I},\mathbf{A}},\ldots,t_n^{\mathbf{I},\mathbf{A}})$

Example: Modelling 'mutual exclusion'

define a first-order language L(R, F, C) for 'mutual exclusion'

relation symbols R binary

 C_i, N_i, T_i unary for $i \in [1, 2]$

function symbols none

constant symbols k_0, k_1, \ldots, k_7

11

Syntax Substitutions Semantics

represent the protocol by a first-order model $\mathbf{M} = (\mathbf{D}, \mathbf{I})$

domain: $\mathbf{D} = \{s_0, s_1, \dots, s_7\}$

interpretation I:

 \rightarrow I interprets the symbol R by the relation R^{I} where

$$\{(s_0, s_1), (s_0, s_2), (s_1, s_3), (s_1, s_4), (s_2, s_4), (s_2, s_5), (s_3, s_6), \\ (s_4, s_6), (s_4, s_7), (s_5, s_7), (s_6, s_2), (s_7, s_1), (s_3, s_0), (s_5, s_0)\} = R^{\mathbf{I}}$$

- **I** interprets C_i by $C_i^{\mathbf{I}}$ where $s_3, s_6 \in C_1^{\mathbf{I}}$ and $s_5, s_7 \in C_2^{\mathbf{I}}$
- I interprets N_i by N_i^I where $s_0, s_2, s_5 \in N_1^I$ and $s_0, s_1, s_3 \in N_2^I$
- ightharpoonup f I interprets T_i by $T_i^{f I}$ where $s_1,s_4,s_7\in T_1^{f I}$ and $s_2,s_4,s_6\in T_2^{f I}$
- ightharpoonup finally \mathbf{I} associates a state s_i with each c_i : $c_i^{\mathbf{I}} = s_i$

assignment A: arbitrary

truth value for formulas

- → an assignment B in a model M is an x-variant of an assignment A if the values differ only for x
- ⇒ let $\mathbf{M} = (\mathbf{D}, \mathbf{I})$ be a model, \mathbf{A} an assignment in \mathbf{M} ; define the truth-value $[X]^{\mathbf{I}, \mathbf{A}}$ of a formula X

$$P(t_1, \dots, t_n)]^{\mathbf{I}, \mathbf{A}} = \mathbf{t} \text{ iff } (t_1^{\mathbf{I}, \mathbf{A}}, \dots, t_n^{\mathbf{I}, \mathbf{A}}) \in P^{\mathbf{I}}$$

$$T^{\mathbf{I}, \mathbf{A}} := \mathbf{t}$$

$$\bot^{\mathbf{I}, \mathbf{A}} := \mathbf{f}$$

- $((A \circ B)]^{\mathbf{I}, \mathbf{A}} := (A^{\mathbf{I}, \mathbf{A}} \circ B^{\mathbf{I}, \mathbf{A}})$
- \rightarrow $[(\forall x)A]^{I,A} = \mathbf{t}$ iff $A^{I,B} = \mathbf{t}$ for every **B**, **B** x-variant of **A**
- \rightarrow $[(\exists x)A]^{I,A} = \mathbf{t}$ iff $A^{I,B} = \mathbf{t}$ for some **B**, **B** x-variant of **A**

Syntax Substitutions Semantics

Definition

validity & satisfiability

- \rightarrow X is true in M, if $X^{I,A} = \mathbf{t}$ for all assignments A
- \rightarrow X is valid, if X is true in all models for the language
- ⇒ as set S of formulas is satisfiable in M, if there is some A such that $X^{I,A} = \mathbf{t}$ for all $X \in S$
- \rightarrow S is satisfiable, if satisfiable in some **M**

Example let \mathbf{M} be the model of the 'mutual exclusion' protocol; we show that $\forall x \neg (C_1(x) \land C_2(x))$ in true in \mathbf{M}

$$[\forall x \neg (C_1(x) \land C_2(x))]^{I,A} = \mathbf{t}$$

iff $[\neg (C_1(x) \land C_2(x))]^{I,B} = \mathbf{t}$ for any x -variant \mathbf{B} of \mathbf{A}
iff $\neg ([C_1(x)]^{I,B} \land [C_2(x)]^{I,B}) = \mathbf{t}$ for any x -variant \mathbf{B} of \mathbf{A}
iff $\neg (x^B \in C_1^I \land x^B \in C_2^I) = \mathbf{t}$ for any x -variant \mathbf{B} of \mathbf{A}
iff $\neg (s \in C_1^I \land s \in C_2^I) = \mathbf{t}$ for any $s \in \mathbf{D}$

Summary

- ⇒ syntax of first-order logic
- substitutions
- semantics of first-order logic