

Model Existence

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 のへで

4

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶

- 문

Uniform Notation

quantified formulas are grouped into two categories:

6

10

Lemma let
$$C^+$$
 be an alternate FCP that is subset closed, then
• C^+ is extendable to a C^* of finite character
• C^* is subset closed
Proof let C^* consist of those sets, all of whose finite subsets
are in C ; the lemma follows easily
let $X_1, X_2, ...$ be an enumeration of all first-order sentences
 $S_1 := S$
 $S_{n+1} := \begin{cases} S_n & \text{if } S_n \cup \{X_n\} \notin C^* \\ S_n \cup \{X_n\} \cup \{\delta(p)\} & \text{if } S_n \cup \{X_n\} \in C^* \text{ and } X_n \text{ is not } \delta \\ S_n \cup \{X_n\} \cup \{\delta(p)\} & \text{if } S_n \cup \{X_n\} \in C^*, X_n \text{ is } \delta, \\ p \text{ a new parameter} \end{cases}$
NB: each S_i leaves infinitely many parameters unused
Model Extende
Model Uniform notation Hindka's lemma Model Extence
finally set
 $H := \bigcup_i S_i$
by construction $S \in H$, furthermore
= $H \in C^*$: follows from the fact that C^* is of finite character
= H is maximal: follows by definition
= H is a first-order Hintikka set: we consider two cases:
• suppose $\gamma \in H$
 $H \cup \{\gamma(t)\} \in C^*$ for every closed term t
 $H \cup \{\gamma(t)\} = H$
• suppose $\delta \in H$
 $\delta \in H$ implies $\delta(p) \in H$ for some parameter ρ (by definition)
hence $\delta(t) \in H$ for some term t in L^{par}
= H is satisfiable by Hintikka's lemma
• note that H is satisfiable by a Herbrand model wrt L^{par}

