Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

G. Moser

Schedule

week 1	October 5	week 7	November 30
week 2	October 12	week 8	December 7
week 3	October 19	week 9	December 14
week 4	November 9	week 10	January 11
week 5	no lecture	week 11	January 18
week 6	November 23	first exam	January 25

⇒ signature	$0, 1, \dots 9$ constants $+, :$ binary	
→ rewrite rule	$\begin{array}{llllllllllllllllllllllllllllllllllll$	9 1:0 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 x (x + y) : z
➡ rewriting	$\begin{array}{c} (2:3) + (7:7) \rightarrow 7: (2:3) + 7 \\ \rightarrow 7: (2:(3+7)) \rightarrow 7: (2:(1:0)) \rightarrow 7: ((2+7)) \\ \rightarrow 7: (3:0) \qquad \rightarrow (7+3): 0 \qquad \rightarrow (1:0) \end{array}$	2 + 1) : 0)) : 0
Advanced Topics in Term Rew	rriting G. Moser	5
➡ signature	0, fib constants S unary $f_{,+,:}$ b	inary
➡ rules	$\begin{array}{rcccc} 0+y & \to & y & \text{fib} & \to & f(S(0),S(0)) \\ S(x)+y & \to & S(x+y) & f(x,y) & \to & x:f(y,x) \end{array}$	(0)) + y)
➡ rewriting	$ \begin{array}{lll} \mbox{fib} & \to & f(S(0), S(0)) \\ & \to & S(0): f(S(0), S(0) + S(0)) \\ & \to & S(0): f(S(0), S(0 + S(0))) \\ & \to & S(0): f(S(0), S(S(0))) \\ & \to & S(0): S(0): f(S(S(0)), S(0) + S(S(0))) \\ & \to^+ & S(0): S(0): f(S(S(0)), S(S(S(0)))) \\ & \to^+ & S(0): S(0): S^2(0): f(S^3(0), S^5(0)) \\ & \to^+ & S(0): S(0): S^2(0): S^3(0): f(S^5(0), s) \\ \end{array} $	9))) S ⁸ (0))
	infinite computation	

Terms

Termination

TRS is terminating if there are no infinite rewrite sequences

Theorem

TRS \mathcal{R} is terminating iff \exists well-founded order > on terms such that

 $s \to_{\mathcal{R}} t \implies s > t$

inconvenient to check all rewrite steps

but: sometimes induction over the term structure, together with a well-founded relation cannot be avoided

G. Moser

Advanced Topics in Term Rewriting

Theorem

TRS ${\mathcal R}$ is terminating iff \exists well-founded order > on terms such that

 $1 \quad l \to r \in \mathcal{R} \quad \Longrightarrow \quad l > r$

- 2 > is closed under contexts $(s > t \Rightarrow u[s]_p > u[t]_p)$
- \exists > is closed under substitutions $(s > t \Rightarrow s\sigma > t\sigma)$

Definition

binary relation > on terms is reduction order if

- 1 closed under contexts
- 2 closed under substitutions
- **3** proper order (irreflexive and transitive)
- 4 well-founded

Definition TRS \mathcal{R} and > are compatible if $l > r$ for all $l \rightarrow r \in \mathcal{R}$				
Theorem TRS ${\cal R}$ is terminating iff compatible with reduction order				
Question				
how to construct reduction orders ?				
1 use algebras (semantic approach)				
2 use induction (syntactic approach)				
Advanced Topics in Term Rewriting G. Moser	13			
Definition				
<pre>> precedence is proper order > on \$\mathcal{F}\$</pre> > relation > _{lpo} (lexicographic path order) on terms: $s >_{lpo} t$ if $s = f(s_1, \ldots, s_n)$ and either 1 ∃ i s _i > _{lpo} t or s _i = t, 2 t = g(t_1, \ldots, t_m) and f > g and ∀j s > _{lpo} t _j , or 3 t = f(t_1, \ldots, t_n) and ∃ i				
$orall j \in \llbracket 1, i-1 rbrace s_j = t_j$ $s_i >_{\sf lpo} t_i$ $orall j > i \ s >_{\sf lpo} t_j$				
Theorem $>_{Ipo}$ is reduction order if $>$ is well-founded				
$\begin{array}{rcccc} x + 0 & \to & x \\ x + S(y) & \to & S(x + y) \\ x \times 0 & \to & 0 \\ x \times S(y) & \to & x \times y + x \end{array} \qquad \qquad$				

Theorem

 $>_{mpo}$ is reduction order if > is well-founded

Definition

→ weight function (w, w_0) consists of mapping $w: \mathcal{F} \to \mathbb{N}$ and constant $w_0 > 0$ such that $w(c) \ge w_0$ for all constants $c \in \mathcal{F}$

 \rightarrow weight of term *t* is

$$\mathsf{w}(t) = w_0 \cdot \big(\sum_{x \in \mathsf{Var}(t)} |t|_x\big) + \sum_{f \in \mathsf{FS}(t)} \mathsf{w}(f) \cdot |t|_f$$

➡ weight function (w, w_0) is admissible for precedence > if f > g for all $g \in \mathcal{F} \setminus \{f\}$

whenever f is unary function symbol in \mathcal{F} with w(f) = 0

w(+) = w(S) = 0 w(0) = 1 $S > \circ > 0$

G. Moser

Advanced Topics in Term Rewriting

Definition

- ➡ precedence is proper order > on \mathcal{F}
- → admissible weight function (w, w_0)
- → relation >_{kbo} (Knuth-Bendix order) on terms: $s >_{kbo} t$ if $|s|_x \ge |t|_x$ for all $x \in \mathcal{V}$ and either

$$\begin{array}{ll} w(s) > w(t), \\ w(s) = w(t) \text{ and either} \\ & \bullet \quad \exists n > 0 \ \exists x \in \mathcal{V} \ s = f^n(x) \text{ and } t = x \\ & \bullet \quad s = f(s_1, \dots, s_n) \text{ and } t = f(t_1, \dots, t_n) \text{ and } \exists i \\ & \forall j < i \ s_j = t_j \qquad s_i >_{kbo} t_i \end{array}$$

$${f 3}$$
 $s=f(s_1,\ldots,s_n)$ and $t=g(t_1,\ldots,t_m)$ and $f>g$

Theorem

 $>_{kbo}$ is reduction order if > is well-founded and (w, w_0) admissible

Theorem

Definition

➡ well-founded monotone *F*-algebra (WFMA) (*A*, >) is non-empty algebra *A* = (*A*, {*f_A*}_{*f*∈*F*}) together with well-founded order > on *A* such that every *f_A* is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in [1, n]$ with $a_i > b$

→ binary relation $>_{\mathcal{A}}$ on terms:

 $s >_{\mathcal{A}} t \iff [\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$ for all assignments α

interpretation of ${\it s}$ in ${\cal A}$ under assignment α

➡ TRS R and WFMA (A,>) are compatible if R and >_A are compatible

Theorem

- \Rightarrow >_{\mathcal{A}} is reduction order for every WFMA ($\mathcal{A},>$)
- ➡ TRS is terminating iff compatible with WFMA

Definition

TRS \mathcal{R} is polynomially terminating if compatible with WFMA $(\mathcal{A}, >)$ such that

- 1 carrier of \mathcal{A} is \mathbb{N}
- 2 > is standard order on $\mathbb N$

lexicographic path order

Knuth-Bendix order

3 $f_{\mathcal{A}}$ is polynomial for every f

$$\begin{array}{ll} x + 0 \to x & 0 := 1 \\ x + S(y) \to S(x + y) & S_{\mathcal{A}} := \lambda x \cdot x + 1 \\ x \times 0 \to 0 & +_{\mathcal{A}} := \lambda xy \cdot x + 2y \\ x \times S(y) \to x \times y + x & \times_{\mathcal{A}} := \lambda xy \cdot (x + 1)(y + 1)^2 \end{array}$$

Advanced Topics in Term Rewriting

G. Moser

History

- ➡ interpretation method
 Turing 1949
- polynomial interpretations
 Lankford 1975
 - Ben Cherifa, Lescanne 1987
 - Schütte 1960
 - Dershowitz 1982
 - Kamin, Lévy 1980
 - Knuth, Bendix 1970
 - Dick, Kalmus, Martin 1990

recursive decomposition order
 Jouannaud, Lescanne, Reinig 1982

Remark

traditional termination methods yield simple termination