Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00–18:00 (3M09)

Schedule

week 1	October 5	week 7	November 30
week 2	October 12	week 8	December 7
week 3	October 19	week 9	December 14
week 4	November 9	week 10	January 11
week 5	no lecture	week 11	January 18
week 6	November 23	first exam	January 25

Advanced Topics in Term Rewriting

G. Moser

.

Advanced Topics in Term Rewriting

G. Moser

Content

- Termination
 - → Semantic Labelling
 - → Dependency Pairs
- Complexity
 - → Computational Complexity (?)
 - → Derivational Complexity
- Proof Techniques
 - → Kruskal's Theorem
 - → Tree Automata (?)

Term Rewriting

ightharpoonup signature 0 constant S unary $+ \times$ binary

rewrite rules $0+x \rightarrow x \\ S(x)+y \rightarrow S(x+y) \\ 0\times x \rightarrow 0 \\ S(x)\times y \rightarrow x\times y+y$

rewriting $S(0) + S(S(0) \times S(S(0)))$ $\rightarrow S(0) + S(0 \times S(S(0)) + S(S(0)))$ $\rightarrow S(0) + S(0 + S(S(0)))$

→ S(0) + S(S(S(0)))→ S(S(S(S(0))))

normal form

 \Rightarrow signature $0,1,\ldots 9$ constants +,: binary

 \rightarrow rewrite rules $0+0\rightarrow 0$ $1+0\rightarrow 1$ \cdots $9+0\rightarrow 9$ \cdots 9 + 1 \rightarrow 1 : 0 $0+1 \rightarrow 1 \quad 1+1 \rightarrow 2$ $0+2\rightarrow 2$ $1+2\rightarrow 3$ $\cdots 9+2 \rightarrow 1:1$ \cdots 9 + 3 \rightarrow 1 : 2 $0+3\rightarrow 3$ $1+3\rightarrow 4$ $0+4\rightarrow 4$ $1+4\rightarrow 5$ \cdots 9 + 5 \rightarrow 1 : 4 $0+5\rightarrow 5$ $1+5\rightarrow 6$ $0 + 6 \rightarrow 6 \quad 1 + 6 \rightarrow 7$ \cdots 9 + 6 \rightarrow 1 : 5 \cdots 9 + 7 \rightarrow 1 : 6 $0+7\rightarrow7$ $1+7\rightarrow8$ $0 + 8 \to 8$ $1 + 8 \to 9$ \cdots $9 + 8 \to 1 : 7$ $0+9 \to 9$ $1+9 \to 1:0$ \cdots $9+9 \to 1:8$

rewriting $(2:3) + (7:7) \rightarrow 7: (2:3) + 7$ $\rightarrow 7: (2:(3+7)) \rightarrow 7: (2:(1:0)) \rightarrow 7: ((2+1):0)$ $\rightarrow 7: (3:0) \rightarrow (7+3): 0 \rightarrow (1:0): 0$ \Rightarrow signature 0, fib constants S unary f, +, : binary

rules $0 + y \rightarrow y$ fib \rightarrow f(S(0), S(0)) S(x) + y \rightarrow S(x + y) f(x,y) \rightarrow x: f(y,x + y)

rewriting fib \rightarrow f(S(0),S(0)) \rightarrow S(0): f(S(0),S(0) + S(0)) \rightarrow S(0): f(S(0),S(0+S(0))) \rightarrow S(0): f(S(0),S(S(0))) \rightarrow S(0): S(0): f(S(S(0)),S(0) + S(S(0))) \rightarrow^+ S(0): S(0): f(S(S(0)),S(S(S(0)))) \rightarrow^+ S(0): S(0): S²(0): f(S³(0),S⁵(0)) \rightarrow^+ S(0): S(0): S²(0): S³(0): f(S⁵(0),S⁸(0))

infinite computation

Advanced Topics in Term Rewriting

G. Moser

 $x + (y:z) \rightarrow y: (x+z)$ $0: x \rightarrow x$ $(x:y) + z \rightarrow x: (y+z)$ $x: (y:z) \rightarrow (x+y): z$

Advanced Topics in Term Rewriting

G. Moser

Terms

- \Rightarrow signature \mathcal{F} function symbols with arities
- ightharpoonup variables \mathcal{V} $\mathcal{F} \cap \mathcal{V} = \emptyset$ infinitely many
- \rightarrow terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- \Rightarrow ground terms $\mathcal{T}(\mathcal{F})$

(2:x) + ((1:x):y)

Operations

- \rightarrow Var(t) \times y
- \rightarrow FS(t) 1 2 : +
- \rightarrow root(t) +

2 x : y

Subterms and Positions

Definition

- \Rightarrow $s \le t$ s is subterm of t
- $\Rightarrow t|_p$ take subterm of t at position p
- $t[s]_p$ replace subterm in t at position p by s
- $ightharpoonup \mathcal{P}\mathsf{os}(t) = \mathcal{P}\mathsf{os}_{\mathcal{F}}(t) \cup \mathcal{P}\mathsf{os}_{\mathcal{V}}(t)$
- \Rightarrow $p \leqslant q$ above
- $\Rightarrow p \parallel q$ parallel



Substitutions

ightharpoonup substitution is mapping $\sigma: \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V})$ such that

$$\mathcal{D}om(\sigma) = \underbrace{\{x \in \mathcal{V} \mid \sigma(x) \neq x\}}_{\text{domain}}$$

is finite

 \Rightarrow application of substitution σ to term t:

$$egin{aligned} m{t} \sigma &= egin{cases} \sigma(t) & ext{if } t ext{ is variable} \ f(t_1 \sigma, \dots, t_n \sigma) & ext{if } t &= f(t_1, \dots, t_n) \end{cases}$$

ightharpoonup empty substitution ε ($\mathcal{D}om(\varepsilon) = \varnothing$)

Advanced Topics in Term Rewriting

Advanced Topics in Term Rewriting

Termination

Definition

TRS is terminating if there are no infinite rewrite sequences

Theorem

TRS \mathcal{R} is terminating iff \exists well-founded order > on terms such that

 $s \rightarrow_{\mathcal{R}} t \implies s > t$

inconvenient to check all rewrite steps

but: sometimes induction over the term structure, together with a well-founded relation cannot be avoided

Term Rewrite Systems

- ightharpoonup rewrite rule $(I \rightarrow r)$ is pair of terms I, r such that
 - 1 $I \notin \mathcal{V}$
 - 2 $Var(r) \subseteq Var(I)$
- \rightarrow term rewrite system (TRS) is pair $(\mathcal{F}, \mathcal{R})$
 - 1 \mathcal{F} signature
 - set of rewrite rules between terms in $\mathcal{T}(\mathcal{F},\mathcal{V})$
- \rightarrow binary relation $\rightarrow_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F},\mathcal{V})$ for every TRS $(\mathcal{F},\mathcal{R})$:

$$s \to_{\mathcal{R}} t \iff \exists p \in \mathcal{P}os(s) \\ \exists I \to r \in \mathcal{R} \quad \text{with} \quad s|_{p} = I\sigma \quad \text{redex} \\ \exists \text{ substitution } \sigma$$

Theorem

TRS \mathcal{R} is terminating iff \exists well-founded order > on terms such that

- $1 \rightarrow r \in \mathbb{R} \implies 1 > r$
- $|2\rangle$ is closed under contexts $(s > t \Rightarrow u[s]_p > u[t]_p)$
- 3 > is closed under substitutions $(s > t \Rightarrow s\sigma > t\sigma)$

Definition

binary relation > on terms is reduction order if

- closed under contexts
- closed under substitutions
- 3 proper order (irreflexive and transitive)
- 4 well-founded

Definition

TRS \mathcal{R} and > are compatible if I > r for all $I \rightarrow r \in \mathcal{R}$

Theorem

TRS \mathcal{R} is terminating iff compatible with reduction order

Question

how to construct reduction orders?

- 1 use algebras (semantic approach)
- 2 use induction (syntactic approach)

Advanced Topics in Term Rewriting

G. Moser

Theorem

- (incrementality) \rightarrow if $> \subseteq \square$ then $>_{lpo} > \subseteq >_{lpo} \square$
- \rightarrow if > is total then $>_{lpo}$ is total on ground terms (well-order)
- → following two problems are decidable:
 - 1 instance: terms s, t >

question: $s >_{lpo} t$?

2 instance: terms s, t

question: \exists precedence > such that $s >_{lpo} t$?

$$ack(0,0) \rightarrow 0$$

 $ack(S(x), 0) \rightarrow S(0)$

$$ack(0, S(y)) \rightarrow S(S(ack(0, y)))$$

ack > S

 $ack(S(x), S(y)) \rightarrow ack(x, ack(S(x), y))$

Definition

- \rightarrow precedence is proper order > on \mathcal{F}
- → relation >_{lpo} (lexicographic path order) on terms:

$$s>_{\mathsf{lpo}} t$$
 if $s=f(s_1,\ldots,s_n)$ and either

- $\exists i \ s_i >_{\mathsf{lpo}} t \ \mathsf{or} \ s_i = t,$
- 2 $t = g(t_1, \ldots, t_m)$ and f > g and $\forall j \ s >_{lpo} t_j$, or
- 3 $t = f(t_1, \ldots, t_n)$ and $\exists i$

$$\forall j \in [1, i-1] \ s_j = t_j \qquad s_i >_{\mathsf{lpo}} t_i \qquad \forall j > i \ s >_{\mathsf{lpo}} t_j$$

Theorem

 $>_{lpo}$ is reduction order if > is well-founded

$$x + 0 \rightarrow x$$

 $x + S(y) \rightarrow S(x + y)$
 $x \times 0 \rightarrow 0$
 $x \times S(y) \rightarrow x \times y + x$
 $x \times S(y) \rightarrow x \times y + x$

Advanced Topics in Term Rewriting

G. Moser

Definition

- ightharpoonup precedence is proper order > on \mathcal{F}
- → relation >_{mpo} (multiset path order) on terms:

$$s>_{\sf mpo} t$$
 if $s=f(s_1,\ldots,s_n)$ and either

- 1 $\exists i \ s_i >_{mpo} t \ or \ s_i = t$
- $t = g(t_1, \ldots, t_m)$ and f > g and $\forall j \ s >_{mpo} t_i$
- 3 $t = f(t_1, ..., t_n)$ and $\{s_1, ..., s_n\} >_{mpo} {}^{mul} \{t_1, ..., t_n\}$

multiset difference

$$M >_{\mathsf{mpo}}^{\mathsf{mul}} N \iff \widetilde{M - N} \neq \emptyset \land$$

 $\forall \ t \in N - M \ \exists \ s \in M - N \ s >_{\mathsf{mpo}} t$

Theorem

>_{mpo} is reduction order if > is well-founded

Definition

- ightharpoonup weight function (w, w_0) consists of mapping $w \colon \mathcal{F} \to \mathbb{N}$ and constant $w_0 > 0$ such that $w(c) > w_0$ for all constants $c \in \mathcal{F}$
- \rightarrow weight of term t is

$$\mathsf{w}(t) = \mathsf{w}_0 \cdot ig(\sum_{\mathsf{x} \in \mathsf{Var}(t)} |t|_{\mathsf{x}} ig) + \sum_{\mathsf{f} \in \mathsf{FS}(t)} \mathsf{w}(\mathsf{f}) \cdot |t|_{\mathsf{f}}$$

 \rightarrow weight function (w, w_0) is admissible for precedence > if f > g for all $g \in \mathcal{F} \setminus \{f\}$ whenever f is unary function symbol in \mathcal{F} with w(f) = 0

$$w(+) = w(S) = 0$$
 $w(0) = 1$ $S > 0 > 0$

Advanced Topics in Term Rewriting

G. Moser

Advanced Topics in Term Rewriting

Theorem

- \rightarrow if $> \subset \Box$ and (w, w_0) admissible then $>_{kbo} > \subset >_{kbo} \Box$ (incrementality)
- \rightarrow if > is total then $>_{kbo}$ is total on ground terms (well-order)
- → following two problems are decidable:

1 instance: terms s, $t > (w, w_0)$

question: $s >_{kbo} t$?

instance: terms s, t

question: \exists precedence > and admissible (w, w_0) such that $s >_{kbo} t$?

$$g(g(x)) \rightarrow f(x)$$

 $f(g(x)) \rightarrow g(f(x))$ $f > g \land w(f) = w(g) = 1$

Definition

- \rightarrow precedence is proper order > on \mathcal{F}
- \rightarrow admissible weight function (w, w_0)
- ⇒ relation >_{kbo} (Knuth-Bendix order) on terms: $s>_{\mathsf{kbo}} t$ if $|s|_x \geq |t|_x$ for all $x \in \mathcal{V}$ and either
 - 1 w(s) > w(t),
 - w(s) = w(t) and either
 - $\exists n > 0 \ \exists x \in \mathcal{V} \ s = f^n(x) \ \text{and} \ t = x$
 - $s = f(s_1, \ldots, s_n)$ and $t = f(t_1, \ldots, t_n)$ and $\exists i$

$$\forall j < i \ s_i = t_i \quad s_i >_{\mathsf{kbo}} t_i$$

3 $s = f(s_1, ..., s_n)$ and $t = g(t_1, ..., t_m)$ and f > g

Theorem

 $>_{\mathsf{kho}}$ is reduction order if > is well-founded and $(\mathsf{w}, \mathsf{w}_0)$ admissible

G. Mosei

20

Definition

 \rightarrow well-founded monotone \mathcal{F} -algebra (WFMA) $(\mathcal{A}, >)$ is non-empty algebra $\mathcal{A} = (A, \{f_A\}_{f \in \mathcal{F}})$ together with well-founded order > on A such that every f_A is strictly monotone in all coordinates:

$$f_{\mathcal{A}}(a_1,\ldots,a_i,\ldots,a_n) > f_{\mathcal{A}}(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in [1, n]$ with $a_i > b$

⇒ binary relation >_A on terms:

$$s>_{\mathcal{A}} t \Longleftrightarrow [\alpha]_{\mathcal{A}}(s) > [\alpha]_{\mathcal{A}}(t)$$
 for all assignments α interpretation of s in \mathcal{A} under assignment α

ightharpoonup TRS \mathcal{R} and WFMA $(\mathcal{A}, >)$ are compatible if \mathcal{R} and $>_{\mathcal{A}}$ are compatible

Theorem

- \Rightarrow >_A is reduction order for every WFMA (A, >)
- → TRS is terminating iff compatible with WFMA

Definition

TRS \mathcal{R} is polynomially terminating if compatible with WFMA $(\mathcal{A},>)$ such that

- 1 carrier of \mathcal{A} is \mathbb{N}
- $\mathbf{2}$ > is standard order on \mathbb{N}
- $f_{\mathcal{A}}$ is polynomial for every f

$$x + 0 \to x \qquad 0 := 1$$

$$x + S(y) \to S(x + y) \qquad S_{\mathcal{A}} := \lambda x \cdot x + 1$$

$$x \times 0 \to 0 \qquad +_{\mathcal{A}} := \lambda xy \cdot x + 2y$$

$$x \times S(y) \to x \times y + x \qquad \times_{\mathcal{A}} := \lambda xy \cdot (x + 1)(y + 1)^{2}$$

History

interpretation method	Turing	1949
polynomial interpretations	Lankford Ben Cherifa, Lescanne	1975 1987
→ lexicographic path order	Schütte Dershowitz Kamin, Lévy	
➤ Knuth-Bendix order	Knuth, Bendix Dick, Kalmus, Martin	
recursive decomposition order		

Advanced Topics in Term Rewriting

traditional termination methods yield simple termination

Jouannaud, Lescanne, Reinig 1982