Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Term Rewriting

\Rightarrow Termination
\Rightarrow Semantic Labelling
\Rightarrow Dependency Pairs
\Rightarrow Complexity
\Rightarrow Computational Complexity (?)
\Rightarrow Derivational Complexity
\Rightarrow Proof Techniques
= Kruskal's Theorem
\Rightarrow Tree Automata

Content

Schedule

\Rightarrow signature 0 , fib constants S unary $f,+$,: binary
\Rightarrow rules

$$
\begin{array}{rlrl}
0+y & \rightarrow y & \mathrm{fib} & \rightarrow \mathrm{f}(\mathrm{~S}(0), \mathrm{S}(0)) \\
\mathrm{S}(x)+y & \rightarrow \mathrm{~S}(x+y) & \mathrm{f}(x, y) & \rightarrow x: \mathrm{f}(y, x+y)
\end{array}
$$

\Rightarrow rewriting fib $\rightarrow f(S(0), S(0))$

$$
\rightarrow \quad S^{\prime}(0): f(S(0), S(0)+S(0))
$$

$$
\rightarrow \quad S(0): f(S(0), S(0+S(0)))
$$

$$
\rightarrow \quad S(0): f(S(0), S(S(0)))
$$

$$
\rightarrow \quad S(0): S(0): f(S(S(0)), S(0)+S(S(0)))
$$

$$
\rightarrow^{+} \quad S(0): S(0): f(S(S(0)), S(S(S(0))))
$$

$$
\rightarrow^{+} \mathrm{S}(0): \mathrm{S}(0): \mathrm{S}^{2}(0): f\left(\mathrm{~S}^{3}(0), \mathrm{S}^{5}(0)\right)
$$

$$
\rightarrow^{+} S(0): S(0): S^{2}(0): S^{3}(0): f\left(S^{5}(0), S^{8}(0)\right)
$$

infinite computation

Subterms and Positions

Definition

$\Rightarrow s \unlhd t \quad s$ is subterm of t
$\left.\Rightarrow t\right|_{p} \quad$ take subterm of t at position p
$\Rightarrow t[s]_{p}$ replace subterm in t at position p by s
$\Rightarrow \mathcal{P o s}(t)=\operatorname{Pos}_{\mathcal{F}}(t) \cup \operatorname{Pos}_{\mathcal{V}}(t)$

$\Rightarrow p \leqslant q$ above
$\Rightarrow p \| q$ parallel

Substitutions

\Rightarrow substitution is mapping $\sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ such that

$$
\operatorname{Dom}(\sigma)=\underbrace{\{x \in \mathcal{V} \mid \sigma(x) \neq x\}}_{\text {domain }}
$$

is finite
\Rightarrow application of substitution σ to term t :

$$
t \sigma= \begin{cases}\sigma(t) & \text { if } t \text { is variable } \\ f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

\Rightarrow empty substitution $\varepsilon \quad(\mathcal{D o m}(\varepsilon)=\varnothing)$

Termination

Definition

TRS is terminating if there are no infinite rewrite sequences

Theorem

TRS \mathcal{R} is terminating iff \exists well-founded order $>$ on terms such that

$$
s \rightarrow \mathcal{R} t \Longrightarrow s>t
$$

inconvenient to check all rewrite steps
= but: sometimes induction over the term structure, together with a well-founded relation cannot be avoided

Term Rewrite Systems

\Rightarrow rewrite rule $(I \rightarrow r)$ is pair of terms I, r such that
(1) $\notin \mathcal{V}$
$[2 \operatorname{Var}(r) \subseteq \operatorname{Var}(I)$
\Rightarrow term rewrite system (TRS) is pair $(\mathcal{F}, \mathcal{R})$
$1 \mathcal{F}$ signature
$2 \mathcal{R}$ set of rewrite rules between terms in $\mathcal{T}(\mathcal{F}, \mathcal{V})$
\Rightarrow binary relation $\rightarrow_{\mathcal{R}}$ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ for every $\operatorname{TRS}(\mathcal{F}, \mathcal{R})$:

$$
s \rightarrow \mathcal{R} t \Longleftrightarrow \begin{aligned}
& \exists p \in \operatorname{Pos}(s) \\
& \exists l \rightarrow r \in \mathcal{R} \\
& \\
& \\
& \exists \text { substitution } \sigma
\end{aligned} \quad \text { with } \quad \begin{gathered}
\left.s\right|_{p}=l \sigma \\
t=s[r \sigma]_{p}
\end{gathered} \quad \text { redex }
$$

Theorem

TRS \mathcal{R} is terminating iff \exists well-founded order $>$ on terms such that
\| $I \rightarrow r \in \mathcal{R} \Longrightarrow I>r$
2 $>$ is closed under contexts $\quad\left(s>t \Rightarrow u[s]_{p}>u[t]_{p}\right)$
$3>$ is closed under substitutions $(s>t \Rightarrow s \sigma>t \sigma)$

Definition

binary relation $>$ on terms is reduction order if
11 closed under contexts
2 closed under substitutions
3 proper order (irreflexive and transitive)
4 well-founded

Definition

TRS \mathcal{R} and $>$ are compatible if $I>r$ for all $I \rightarrow r \in \mathcal{R}$

Theorem

TRS \mathcal{R} is terminating iff compatible with reduction order

Question

how to construct reduction orders ?
1 use algebras (semantic approach)

Definition

\Rightarrow precedence is proper order $>$ on \mathcal{F}
\Rightarrow relation $>_{\text {Ipo }}$ (lexicographic path order) on terms: $s>_{\mathrm{lpo}} t$ if $s=f\left(s_{1}, \ldots, s_{n}\right)$ and either
$1 \exists i s_{i}>_{\text {lpo }} t$ or $s_{i}=t$,
$2 t=g\left(t_{1}, \ldots, t_{m}\right)$ and $f>g$ and $\forall j s \gg_{\text {lpo }} t_{j}$, or
$3 t=f\left(t_{1}, \ldots, t_{n}\right)$ and $\exists i$

$$
\forall j \in[1, i-1] s_{j}=t_{j} \quad s_{i} \gg_{\mathrm{po}} t_{i} \quad \forall j>i s>_{\mathrm{lpo}} t_{j}
$$

Theorem

$>_{\text {lpo }}$ is reduction order if $>$ is well-founded

$$
\begin{array}{ll}
x+0 & \rightarrow x \\
x+\mathrm{S}(y) & \rightarrow \mathrm{S}(x+y) \\
x \times 0 & \rightarrow 0 \\
x \times \mathrm{S}(y) & \rightarrow x \times y+x
\end{array}
$$

Theorem

\Rightarrow if $>\subseteq \sqsupset$ then $>_{\text {Ipo }}>\subseteq>_{\text {Ipo }} \sqsupset \quad$ (incrementality)
\Rightarrow if $>$ is total then $>_{\text {lpo }}$ is total on ground terms (well-order)
\Rightarrow following two problems are decidable:
1 instance: terms $s, t>$
question: $\quad s>_{\text {Ipo }} t$?
2 instance: terms s, t
question: \exists precedence $>$ such that $s>_{\mathrm{Ipo}} t$?

$$
\begin{array}{ll}
\operatorname{ack}(0,0) & \rightarrow 0 \\
\operatorname{ack}(0, S(y)) & \rightarrow \mathrm{S}(\mathrm{~S}(\operatorname{ack}(0, y))) \\
\operatorname{ack}(\mathrm{S}(x), 0) & \rightarrow \mathrm{S}(0) \\
\operatorname{ack}(\mathrm{S}(x), \mathrm{S}(y)) & \rightarrow \\
\operatorname{ack}(x, \operatorname{ack}(\mathrm{~S}(x), y))
\end{array}
$$

Definition

\Rightarrow precedence is proper order $>$ on \mathcal{F}
\Rightarrow relation $>_{\text {mpo }}$ (multiset path order) on terms:
$s>_{\text {mpo }} t$ if $s=f\left(s_{1}, \ldots, s_{n}\right)$ and either
$1 \exists i s_{i}>_{\mathrm{mpo}} t$ or $s_{i}=t$
$2 t=g\left(t_{1}, \ldots, t_{m}\right)$ and $f>g$ and $\forall j s>_{\text {mpo }} t_{j}$
$3 t=f\left(t_{1}, \ldots, t_{n}\right)$ and $\left\{s_{1}, \ldots, s_{n}\right\}>_{\text {mpo }}{ }^{\text {mul }}\left\{t_{1}, \ldots, t_{n}\right\}$

$$
\begin{aligned}
M>_{\mathrm{mpo}}{ }^{\mathrm{mul}} N \Longleftrightarrow & \overbrace{M-N} \neq \varnothing \wedge \\
& \forall t \in N-M \exists s \in M-N s>_{\mathrm{mpo}} t
\end{aligned}
$$

Theorem

$>_{\text {mpo }}$ is reduction order if $>$ is well-founded

Definition

\Rightarrow weight function ($\mathrm{w}, \mathrm{w}_{0}$) consists of mapping $\mathrm{w}: \mathcal{F} \rightarrow \mathbb{N}$ and constant $w_{0}>0$ such that $w(c) \geq w_{0}$ for all constants $c \in \mathcal{F}$
\Rightarrow weight of term t is

$$
\mathrm{w}(t)=w_{0} \cdot\left(\sum_{x \in \operatorname{Var}(t)}|t|_{x}\right)+\sum_{f \in \mathrm{FS}(t)} w(f) \cdot|t|_{f}
$$

\Rightarrow weight function $\left(\mathrm{w}, \mathrm{w}_{0}\right)$ is admissible for precedence $>$ if

$$
f>g \text { for all } g \in \mathcal{F} \backslash\{f\}
$$

whenever f is unary function symbol in \mathcal{F} with $w(f)=0$

$$
w(+)=w(S)=0 \quad w(0)=1 \quad S>0>0
$$

Theorem

\Rightarrow if $>\subseteq \sqsupset$ and $\left(\mathrm{w}, w_{0}\right)$ admissible then $>_{\text {kbo }}>\subseteq>_{\text {kbo }} \sqsupset$ (incrementality)
\Rightarrow if $>$ is total then $>_{\text {kbo }}$ is total on ground terms (well-order)
\Rightarrow following two problems are decidable:
1 instance: terms $s, t>\left(w, w_{0}\right)$
question: $\quad s>_{\mathrm{kbo}} t$?
2 instance: terms s, t
question: \exists precedence $>$ and admissible (w, w_{0}) such that $s>_{\mathrm{kbo}} t$?

$$
\begin{aligned}
& \mathrm{g}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(x) \\
& \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{g}(\mathrm{f}(x))
\end{aligned} \quad \mathrm{f}>\mathrm{g} \wedge \mathrm{w}(\mathrm{f})=\mathrm{w}(\mathrm{~g})=1
$$

Definition

\Rightarrow precedence is proper order $>$ on \mathcal{F}
\Rightarrow admissible weight function ($\mathrm{w}, \mathrm{w}_{0}$)
\Rightarrow relation $>_{\mathrm{kbo}}$ (Knuth-Bendix order) on terms: $s>_{\text {kbo }} t$ if $|s|_{x} \geq|t|_{x}$ for all $x \in \mathcal{V}$ and either
$1 w(s)>w(t)$,
$2 w(s)=w(t)$ and either
(1) $\exists n>0 \exists x \in \mathcal{V} s=f^{n}(x)$ and $t=x$
(2) $s=f\left(s_{1}, \ldots, s_{n}\right)$ and $t=f\left(t_{1}, \ldots, t_{n}\right)$ and $\exists i$
$\forall j<i s_{j}=t_{j} \quad s_{i}>_{\text {kbo }} t_{i}$
(3) $s=f\left(s_{1}, \ldots, s_{n}\right)$ and $t=g\left(t_{1}, \ldots, t_{m}\right)$ and $f>g$

Theorem

$>_{\mathrm{kbo}}$ is reduction order if $>$ is well-founded and (w, w_{0}) admissible

Definition

\Rightarrow well-founded monotone \mathcal{F}-algebra (WFMA) $(\mathcal{A},>)$ is non-empty algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ together with well-founded order $>$ on A such that every $f_{\mathcal{A}}$ is strictly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)>f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in[1, n]$ with $a_{i}>b$
\Rightarrow binary relation $>_{\mathcal{A}}$ on terms:
$s>_{\mathcal{A}} t \Longleftrightarrow \underbrace{[\alpha]_{\mathcal{A}}(s)}>[\alpha]_{\mathcal{A}}(t)$ for all assignments α interpretation of s in \mathcal{A} under assignment α
\Rightarrow TRS \mathcal{R} and WFMA $(\mathcal{A},>)$ are compatible if \mathcal{R} and $>_{\mathcal{A}}$ are compatible

Theorem

$\Rightarrow>_{\mathcal{A}}$ is reduction order for every WFMA $(\mathcal{A},>)$
\Rightarrow TRS is terminating iff compatible with WFMA

Definition

TRS \mathcal{R} is polynomially terminating if compatible with WFMA $(\mathcal{A},>)$ such that
1 carrier of \mathcal{A} is \mathbb{N}
$2]$ is standard order on \mathbb{N}
B $f_{\mathcal{A}}$ is polynomial for every f

$$
\begin{array}{rlrl}
x+0 & \rightarrow x & 0 & :=1 \\
x+\mathrm{S}(y) & \rightarrow \mathrm{S}(x+y) & \mathrm{S}_{\mathcal{A}} & :=\lambda x \cdot x+1 \\
x \times 0 & \rightarrow 0 & +{ }_{\mathcal{A}} & :=\lambda x y \cdot x+2 y \\
x \times \mathrm{S}(y) & \rightarrow x \times y+x & \times_{\mathcal{A}} & :=\lambda x y \cdot(x+1)(y+1)^{2}
\end{array}
$$

History

\Rightarrow interpretation method
Turing
1949
\Rightarrow polynomial interpretations
Lankford
1975
Ben Cherifa, Lescanne 1987
\Rightarrow lexicographic path order
Schütte
1960
Dershowitz 1982
Kamin, Lévy 1980
\Rightarrow Knuth-Bendix order
Knuth, Bendix 1970
Dick, Kalmus, Martin 1990
\Rightarrow recursive decomposition order
Jouannaud, Lescanne, Reinig 1982

Remark

traditional termination methods yield simple termination

