Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

G. Moser

Derivational Complexity

Application

Conclusion

Derivational Complexity of TRSs

 $(\mathcal{F}, \mathcal{R})$ a finitely branching and terminating TRS, \mathcal{F} contains at least one constant

- → let t be a ground term
- \rightarrow the derivation height function dh_R is defined as

$$\mathsf{dh}_{\mathcal{R}}(s) = \mathsf{max}(\{n \mid \exists t \ s \to_{\mathcal{R}}^{n} t\})$$

the derivation height of s measures the maximal number of rewrite steps (aka complexity of \mathcal{R}) with initial term s

→ the derivational complexity function dc_{RS} is defined as

$$dc_{\mathcal{R}}(n) = \max(\{dh_{\mathcal{R}}(s) \mid size(s) \leq n\})$$

Well-known Results

finite signatures

MPO induces primitive recursive derivational complexity

Hofbauer 1992

LPO induces multiply recursive derivational complexity

Weiermann 1995

KBO induces a 2-recursive upper bound, more precisely the derivational complexity function is bounded by $Ack(\mathcal{O}(n), 0)$

Lepper 2001

all mentioned upper-bounds are tight

Advanced Topics in Term Rewriting

G. Moser

Derivational Complexity

Application

Application

Example

Find a TRS that is provable terminating via semantic labelling and KBO but not with semantic labelling on finite models and MPO.

How to show that a given TRS is **not** terminating via semantic labelling and MPO

 $\forall s, \ \mathsf{dh}_{\mathcal{R}}(s) = \mathsf{dh}_{\mathcal{R}_{\mathrm{lab}} \cup \mathcal{D}ec(\succ)}(s)$

use first version

Use Theorem ① to conclude that MPO-termination induced primitive recursive derivational complexity, together with the above lemma

Polynomials induce double-exponential complexity

Theorem 4

polynomial interpretations induce double-exponential derivational complexity Hofbauer, Lautemann

Lemma

 $\forall \mathcal{R}$ terminating via a polynomial interpretation

 $\exists c \in \mathbb{R}, c > 0$

 \forall terms s: $dh_{\mathcal{R}}(s) \leq 2^{2^{c \cdot \text{size}(s)}}$

Lemma

 $\exists \mathcal{R}$ terminating via a polynomial interpretation

 $\exists c \in \mathbb{R}, c > 0$

for infintely many terms s: $dh_{\mathcal{R}}(s) \geq 2^{2^{c \cdot size(s)}}$

Advanced Topics in Term Rewriting

G. Moser

Derivational Complexity

Application

Proof

consider

$$x + 0 \rightarrow x$$

$$d(0) \rightarrow 0$$

$$x + 0 \rightarrow x$$
 $d(0) \rightarrow 0$ $d(S(x)) \rightarrow S(S(d(x)))$

$$x + S(y) \rightarrow S(x + y)$$
 $q(0) \rightarrow 0$ $q(S(x)) \rightarrow q(x) + S(d(x))$

$$q(0) \rightarrow 0$$

$$q(S(x)) \rightarrow q(x) + S(d(x))$$

together with $\mathcal{A}=(\mathbb{N}-\{0,1\},>)$ and $0_{\mathcal{A}}=0$, $S_{\mathcal{A}}(n)=n+1$, $n+_{\mathcal{A}}m = n + 2m$, $d_{\mathcal{A}}(n) = 3n$, $q_{\mathcal{A}}(n) = n^3$

1 S defines the successor function

2 d defines the double function, i.e., $d(S^n(0)) \to_{\mathcal{R}}^* S^{2n}(0)$

3 q defines the square function, i.e., $q(S^n(0)) \rightarrow_{\mathcal{R}}^* S^{n^2}(0)$

To see item 3, we assume 1,2 and proceed by induction on nCase n = 0: $q(S^0(0)) \to_{\mathcal{R}}^* S^{0^2}(0)$

Case n > 0:

$$\frac{q(S^{n+1}(0))}{\to_{\mathcal{R}}} \xrightarrow{q(S^{n}(0))} + S(d(S^{n}(0))) \xrightarrow{*}_{\mathcal{R}} S^{n^{2}}(0) + S(\underline{d(S^{n}(0))}) \xrightarrow{*}_{\mathcal{R}} S^{n^{2}}(0) + S(\underline{d(S^{n}(0))}) \xrightarrow{*}_{\mathcal{R}} S^{n^{2}}(0)$$

using items 1-3, we see

$$s_m := q^{m+1}(S^2(0)) \to_{\mathcal{R}}^* q(S^{2^{2^m}}(0)) \to_{\mathcal{R}}^{2^{2^m}} S^{2^{2^{m+1}}}(0)$$

hence

$$\mathsf{dh}_{\mathcal{R}}(s_m) \geqslant 2^{2^n} = 2^{2^{\mathsf{size}(s_m)-4}} \geqslant 2^{2^{\mathsf{c}\cdot\mathsf{size}(s_m)}}$$

where $c \leqslant \frac{1}{5}$ and all $m \geqslant 1$.

Advanced Topics in Term Rewriting

G. Moser

Derivational Complexity

Application

Conclusion

Conclusion

Proof Scheme

lacktriangledown find a mapping I: $\mathcal{T}(\mathcal{F}) o \mathbb{N}$ such that for all $s,t \in \mathcal{T}(\mathcal{F})$: $s \rightarrow_{\mathcal{R}} t$ implies I(s) > I(t)

then $dh_{\mathcal{R}}(s) \leq I(s)$, and

$$dc_{\mathcal{R}}(n) \leq max(\{l(s) \mid size(s) \leqslant n\})$$

Limitations

- \rightarrow consider \mathcal{R} consisting of $a(b(x)) \rightarrow b(a(x))$ the system is polynomially terminating, with A = (N, >) $a_A(n) = 2n$, $b_{\mathcal{A}}(n) = n + 1$, $c_{\mathcal{A}} = 0$
 - 1 $2^n \cdot m = I(a^n b^m c) \geqslant dh_{\mathcal{R}}(a^n b^m c)$, but
 - 2 $dh_{\mathcal{R}}(a^n b^m c) = n \cdot m$