erivational Complexity	Application	Conclusion	Derivational Complexity	Application	Conclusio	
			Derivat	ional Complexity of TRS	õs	
Advanced Topics in Term Rewriting		ting	$(\mathcal{F},\mathcal{R})$ a finitely branching and terminating TRS, $\mathcal F$ contains at least one constant			
LVA 703610			\Rightarrow let t be a ground term			
			\Rightarrow the derivation height function dh _R is defined as			
http://cl-informatik.u	11bk.ac.at/teaching/ws06/	attr/	$dh_{\mathcal{R}}(s) = \max(\{n \mid \exists t \ s \to_{\mathcal{R}}^{n} t\})$			
Georg Moser office hours: Tuesday, 16:00–18:00 (3M09)			 the derivation height of <i>s</i> measures the maximal number of rewrite steps (aka complexity of <i>R</i>) with initial term <i>s</i> ➡ the derivational complexity function dc_{RS} is defined as 			
Advanced Topics in Term Rewriting	G. Moser	1	Advanced Topics in Term Rewriting	G. Moser	2	
rivational Complexity	Application	Conclusion	Derivational Complexity	Application	Conclus	
Well-known Results			Application			
tin	lite signatures		Example			
Theorem ① MPO induces primitive recursive derivational complexity			Find a TRS that is provable terminating via semantic labelling and KBO but not with semantic labelling on finite models and MPO.			
Theorem ②	Hofbaue	r 1992	How to show that a given TRS is not terminating via semantic labelling and MPO			
LPO induces multiply recurs	ive derivational complexity	1005	Lemma			
Theorem ③		1 1990	$orall s, dh_\mathcal{R}(s) = dh_{\mathcal{R}_{\mathrm{lab}} \cup \mathcal{R}}$	$\mathcal{D}_{ec}(\succ)(s)$ u	se first version	
KBO induces a 2-recursive u derivational complexity funct all mentioned	pper bound, more precisely the tion is bounded by $Ack(\mathcal{O}(n), 0)$ Lepper	Idea Use Theorem ① to conclude that MPO-termination induced primitive recursive derivational complexity, together with the above lemma				
	upper-bounds are tight		lennu			

Derivational Complexity	Application	Conclusion	Derivational Complexity	Application	Conclusio	
Polynomials ind	uce double-exponential co	omplexity	Proof			
Theorem ④			consider			
polynomial interpretat	ions induce double-exponential o	derivational	$x + 0 \rightarrow x$	$d(0) \rightarrow 0 \qquad d(S(x))$)) $\rightarrow S(S(d(x)))$	
complexity	Hofbauer, Laute	emann 1989	$x + S(y) \rightarrow S(x + y)$	$q(0) \rightarrow 0$ $q(S(x$	$)) \rightarrow q(x) + S(d(x))$	
Lemma			together with $\mathcal{A} = (\mathbb{N} - \{0, 1\}, >)$ and $0_{\mathcal{A}} = 0$, $S_{\mathcal{A}}(n) = n + 1$, $n +_{\mathcal{A}}m = n + 2m$, $d_{\mathcal{A}}(n) = 3n$, $q_{\mathcal{A}}(n) = n^3$			
$\forall \mathcal{R}$ terminating via a polynomial interpretation $\exists c \in \mathbb{R}, c > 0$			S defines the successor function			
$\forall \text{ terms } s: dh_{\mathcal{R}}(s) \leq 2^{2^{c \cdot \text{size}(s)}}$			2 d defines the double function, i.e., $d(S^n(0)) \rightarrow_{\mathcal{R}}^* S^{2n}(0)$			
Lemma			3 q defines the square function, i.e., $q(S^n(0)) \rightarrow_{\mathcal{R}}^* S^{n^2}(0)$			
$\exists \mathcal{R} \text{ terminating via a polynomial interpretation}$			To see item 3, we assume 1,2 and proceed by induction on n			
for infintely many terr	ns s: $dh_{\mathcal{R}}(s) \geq 2^{2^{c \cdot size(s)}}$		Case $n = 0$: $q(S^{0}(0)) -$	$\rightarrow^*_{\mathcal{R}} S^{\circ} (0)$		
Advanced Topics in Term Rewriting	G. Moser	5	Advanced Topics in Term Rewriting	G. Moser	6	
rivational Complexity	Application	Conclusion	Conclusion		Conclusi	
Case $n > 0$:			Proof Schomo	Conclusion		
$q(S^{n+1}(0)) \to_{\mathcal{R}} q(S^n($	$0)) + S(d(S^n(0))) \to^*_{\mathcal{R}} S^{n^2}(0) +$	$S(d(S^n(0))) \rightarrow^*_{\mathcal{R}}$			$\Pi \to - \sigma(\sigma)$	
$\rightarrow_{\mathcal{R}}^{*} \underline{S^{n^{2}}(0) + S(S^{2} n(0))} \rightarrow_{\mathcal{R}}^{*} S^{(n+1)^{2}}(0)$			Find a mapping I: $I(\mathcal{F}) \to \mathbb{N}$ such that for all $s, t \in I(\mathcal{F})$: $s \to_{\mathcal{R}} t$ implies $I(s) > I(t)$			
using items 1, 2, up of			then $dh_\mathcal{R}(s) \leqslant I(s)$, and			
using items 1–5, we see $a^m = a^{m+1}$			$dc_{\mathcal{R}}(n) \leq max(\{l(s) \mid size(s) \leqslant n\})$			
$s_m := q^{m+1}(S)$	$\mathcal{P}^{2}(0)) \rightarrow_{\mathcal{R}}^{*} q(S^{2^{2n}}(0)) \rightarrow_{\mathcal{R}}^{2^{2n}} S^{2^{2n}}$	(0)	Limitations			
hence $dh_{\mathcal{R}}(s_m) \geqslant 2^{2^n} = 2^{2^{size(s_m)-4}} \geqslant 2^{2^{c\cdotsize(s_m)}}$			⇒ consider \mathcal{R} consisting of $a(b(x)) \rightarrow b(a(x))$ the system is polynomially terminating, with $\mathcal{A} = (\mathbb{N}, >) a_{\mathcal{A}}(n) = 2n$,			
where $c \leq \frac{1}{5}$ and all $m \geq 1$.			$b_{\mathcal{A}}(n) = n + 1, \ c_{\mathcal{A}} = 0$ $1 \ 2^{n} \cdot m = l(a^{n} b^{m} c) \ge dh_{\mathcal{B}}(a^{n} b^{m} c), \ but$			
			$2 dh_{\mathcal{R}}(a^n b^m c) =$	= n · m		
	<u> </u>					