Semantic Labelling Revisited

Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

G. Moser

.

G. Moser

2

Semantic Labelling Revisited

Definition

weakly monotone \mathcal{F} -algebra WMA (\mathcal{A}, \succ) is non-empty algebra $\mathcal{A} = (A, \{f_{\mathcal{A}}\}_{f \in \mathcal{F}})$ together with proper order \succ on \mathcal{A} such that every $f_{\mathcal{A}}$ is weakly monotone in all coordinates:

$$f_A(a_1,\ldots,a_i,\ldots,a_n) \succeq f_A(a_1,\ldots,b,\ldots,a_n)$$

for all $a_1, \ldots, a_n, b \in A$ and $i \in [1, n]$ with $a_i \succ b$

 \rightarrow binary relation $\succeq_{\mathcal{A}}$ on terms:

 $s \succeq_{\mathcal{A}} t \iff [\alpha]_{\mathcal{A}}(s) \succeq [\alpha]_{\mathcal{A}}(t)$ for all assignments α interpretation of s in \mathcal{A} under assignment α

- → WMA (A, \succ) is quasi-model of TRS \mathcal{R} if $\succeq_{\mathcal{A}}$ and \mathcal{R} are compatible
- \Rightarrow a WMA (A, \succ) is well-founded if \succ is well-founded

Semantic Labelling

Theorem

 \forall TRS \mathcal{R}

 \forall non-empty model ${\mathcal A}$ of ${\mathcal R}$

 \forall labelling ℓ for $\mathcal A$

 \mathcal{R} is terminating \iff $\mathcal{R}_{\mathsf{lab}}$ is terminating

Observation

this version of semantic labelling is useless to prove termination of

$$f(a, b, x) \rightarrow f(x, x, x)$$

$$a \rightarrow 0$$

$$f(x, y, z) \rightarrow c$$

$$\mathsf{b} \to$$

Advanced Topics in Term Rewriting

signature ${\cal F}$

Semantic Labelling Revisited

WMA (A, \succ) with $A = (A, \{f_A\}_{f \in \mathcal{F}})$

Definition

- **⇒** labelling L for \mathcal{F} $\forall f \in \mathcal{F} \exists \text{sets of labels } L_f \subseteq A$
- → labelled signature

$$\mathcal{F}_{\text{lab}} = \{ f_a \mid f \in \mathcal{F} \text{ and } a \in L_f \} \cup \{ f \mid f \in \mathcal{F} \text{ and } L_f = \emptyset \}$$

- ⇒ labelling ℓ for \mathcal{A} is a labelling L for \mathcal{F} and $\forall f \in \mathcal{F} (L_f \neq \varnothing \to \exists \text{ mappings } \ell_f \colon A^n \to L_f)$
- \rightarrow ℓ is weakly monotone if all labeling functions are weakly monotone (in all arguments)
- \rightarrow TRS $\mathcal{D}ec(\succ)$ consists of all rules

$$f_a(x_1,\ldots,x_n)\to f_b(x_1,\ldots,x_n)$$

with $a, b \in L_f$ such that $a \succ b$

TRS \mathcal{R}

$$f(a,b,x) \rightarrow f(x,x,x)$$
 $a \rightarrow c$
 $f(x,y,z) \rightarrow c$ $b \rightarrow c$

 \rightarrow quasi-model \mathcal{A}

carrier:
$$\{0,1,2\}$$
 order: $1>0$, $2>0$ interpretation: $f_{\mathcal{A}}(x,y,z)=c_{\mathcal{A}}=0$ $a_{\mathcal{A}}=1$ $b_{\mathcal{A}}=2$

→ labelling

$$L_{\mathrm{f}} = \{0, 1\}$$
 $L_{\mathrm{a}} = L_{\mathrm{b}} = L_{\mathrm{c}} = \varnothing$ $\ell_{\mathrm{f}}(x, y, z) = \begin{cases} 1 & \text{if } x = 1 \text{ and } y = 2 \\ 0 & \text{otherwise} \end{cases}$

TRS
$$\mathcal{R}_{lab} \cup \mathcal{D}ec(\succ)$$
 MPO with $f_1 > f_0 > c$ $a > c$ $b > c$

$$\begin{array}{ccc} f_1(a,b,x) \to f_0(x,x,x) & a \to c \\ f_1(x,y,z) \to c & b \to c \\ f_0(x,y,z) \to c & f_1(x,y,z) \to f_0(x,y,z) \end{array}$$

Advanced Topics in Term Rewriting

G. Moser

Semantic Labelling Revisited

Theorem

 $\forall \; \mathsf{TRS} \; \mathcal{R}$

 \forall well-founded quasi-model (\mathcal{A}, \succ) of \mathcal{R}

 \forall weakly monotone labelling ℓ for (A, \succ)

 \mathcal{R} is terminating $\iff \mathcal{R}_{lab} \cup \mathcal{D}ec(\succ)$ is terminating

Theorem

- \forall terminating TRS \mathcal{R}
- \exists well-founded quasi-model (\mathcal{A}, \succ) of \mathcal{R}
- \exists weakly monotone labelling ℓ for (\mathcal{A}, \succ)

 $\mathcal{R}_{lab} \cup \mathcal{D}ec(\succ)$ is precedence terminating

Advanced Topics in Term Rewriting

G. Moser