Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting
G. Moser

Semantic Labelling Revisited

Definition

\Rightarrow weakly monotone \mathcal{F}-algebra $\mathrm{WMA}(\mathcal{A}, \succ)$ is non-empty algebra $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$ together with proper order \succ on A such that every $f_{\mathcal{A}}$ is weakly monotone in all coordinates:

$$
f_{\mathcal{A}}\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \succeq f_{\mathcal{A}}\left(a_{1}, \ldots, b, \ldots, a_{n}\right)
$$

for all $a_{1}, \ldots, a_{n}, b \in A$ and $i \in[1, n]$ with $a_{i} \succ b$
\Rightarrow binary relation $\succeq_{\mathcal{A}}$ on terms:

$$
s \succeq_{\mathcal{A}} t \Longleftrightarrow \underbrace{[\alpha]_{\mathcal{A}}(s)} \succeq[\alpha]_{\mathcal{A}}(t) \quad \text { for all assignments } \alpha
$$ interpretation of s in \mathcal{A} under assignment α

\Rightarrow WMA (\mathcal{A}, \succ) is quasi-model of $\operatorname{TRS} \mathcal{R}$ if $\succeq_{\mathcal{A}}$ and \mathcal{R} are compatible
\Rightarrow a WMA (\mathcal{A}, \succ) is well-founded if \succ is well-founded

Semantic Labelling

Theorem

\forall TRS \mathcal{R}
\forall non-empty model \mathcal{A} of \mathcal{R}
\forall labelling ℓ for \mathcal{A}

$$
\mathcal{R} \text { is terminating } \quad \Longleftrightarrow \quad \mathcal{R}_{\text {lab }} \text { is terminating }
$$

Observation

this version of semantic labelling is useless to prove termination of

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{a}, \mathrm{~b}, \mathrm{x}) \rightarrow \mathrm{f}(x, x, x) & \mathrm{a} \rightarrow \mathrm{c} \\
\mathrm{f}(x, y, z) \rightarrow \mathrm{c} & \mathrm{~b} \rightarrow \mathrm{c}
\end{array}
$$

Advanced Topics in Term Rewriting G. Moser

Semantic Labelling Revisited
signature $\mathcal{F} \quad$ WMA (\mathcal{A}, \succ) with $\mathcal{A}=\left(A,\left\{f_{\mathcal{A}}\right\}_{f \in \mathcal{F}}\right)$

Definition

\Rightarrow labelling L for \mathcal{F} $\forall f \in \mathcal{F} \exists$ sets of labels $L_{f} \subseteq A$
\Rightarrow labelled signature

$$
\mathcal{F}_{\text {lab }}=\left\{f_{a} \mid f \in \mathcal{F} \text { and } a \in L_{f}\right\} \cup\left\{f \mid f \in \mathcal{F} \text { and } L_{f}=\varnothing\right\}
$$

\Rightarrow labelling ℓ for \mathcal{A} is a labelling L for \mathcal{F} and $\forall f \in \mathcal{F}\left(L_{f} \neq \varnothing \rightarrow \exists\right.$ mappings $\left.\ell_{f}: A^{n} \rightarrow L_{f}\right)$
$\Rightarrow \ell$ is weakly monotone if all labeling functions are weakly monotone (in all arguments)
\Rightarrow TRS $\operatorname{Dec}(\succ)$ consists of all rules

$$
f_{a}\left(x_{1}, \ldots, x_{n}\right) \rightarrow f_{b}\left(x_{1}, \ldots, x_{n}\right)
$$

with $a, b \in L_{f}$ such that $a \succ b$

Semantic Labelling Revisited
TRS \mathcal{R}

$$
\begin{array}{ll}
\mathrm{f}(\mathrm{a}, \mathrm{~b}, x) \rightarrow \mathrm{f}(x, x, x) & \mathrm{a} \rightarrow \mathrm{c} \\
\mathrm{f}(x, y, z) \rightarrow \mathrm{c} & \mathrm{~b} \rightarrow \mathrm{c}
\end{array}
$$

\Rightarrow quasi-model \mathcal{A}
carrier: $\{0,1,2\}$ order: $1>0,2>0$
interpretation: $\mathrm{f}_{\mathcal{A}}(x, y, z)=\mathrm{c}_{\mathcal{A}}=0 \quad \mathrm{a}_{\mathcal{A}}=1 \quad \mathrm{~b}_{\mathcal{A}}=2$
\Rightarrow labelling

$$
\begin{aligned}
& L_{\mathrm{f}}=\{0,1\} \quad L_{\mathrm{a}}=L_{\mathrm{b}}=L_{\mathrm{c}}=\varnothing \\
& \ell_{\mathrm{f}}(x, y, z)= \begin{cases}1 & \text { if } x=1 \text { and } y=2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

TRS $\mathcal{R}_{\text {lab }} \cup \mathcal{D e c}(\succ) \quad$ MPO with $f_{1}>f_{0}>c \quad a>c \quad b>c$
$\begin{array}{rlrl}\mathrm{f}_{1}(\mathrm{a}, \mathrm{b}, \mathrm{x}) & \rightarrow \mathrm{f}_{0}(x, x, x) & \mathrm{a} & \rightarrow \mathrm{c} \\ \mathrm{f}_{1}(x, y, z) & \rightarrow \mathrm{c} & \mathrm{b} & \rightarrow \mathrm{c} \\ \mathrm{f}_{0}(x, y, z) & \rightarrow \mathrm{c} & \mathrm{f}_{1}(x, y, z) & \rightarrow \mathrm{f}_{0}(x, y, z)\end{array}$

Semantic Labelling Revisited

Theorem

\forall TRS \mathcal{R}
\forall well-founded quasi-model (\mathcal{A}, \succ) of \mathcal{R}
\forall weakly monotone labelling ℓ for (\mathcal{A}, \succ)
\mathcal{R} is terminating $\Longleftrightarrow \mathcal{R}_{\text {lab }} \cup \mathcal{D e c}(\succ)$ is terminating

Theorem

\forall terminating TRS \mathcal{R}
\exists well-founded quasi-model (\mathcal{A}, \succ) of \mathcal{R}
\exists weakly monotone labelling ℓ for (\mathcal{A}, \succ)

$$
\mathcal{R}_{\text {lab }} \cup \mathcal{D e c}(\succ) \text { is precedence terminating }
$$

