Dependency Pairs

Dependency Pairs

Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

Dependency Pairs

Lemma

 $\forall t \in \mathcal{T}_{\infty} \exists (I \rightarrow r) \in \mathcal{R} \exists \sigma \exists non-variable subterm u of r with u \not \downarrow I$

G. Moser

$$t \xrightarrow{>\epsilon} {}^{*}_{\mathcal{R}} I\sigma \xrightarrow{\epsilon}_{\mathcal{R}} r\sigma \trianglerighteq u\sigma \in \mathcal{T}_{\infty}$$

Definition

tentative

3

$$\mathcal{S} = \{ I \rightarrow u \mid I \rightarrow r \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \not < I \}$$

Lemma

Advanced Topics in Term Rewriting

 $\forall t \in \mathcal{T}_{\infty} \exists (I \to u) \in \mathcal{S} \exists \sigma \qquad t \xrightarrow{>\epsilon} t \xrightarrow{\epsilon} u\sigma \in \mathcal{T}_{\infty}$

get rid of position constraints by marking root symbols of terms in rewrite rules of ${\mathcal S}$

G. Moser

Observation					
\forall non-terminating TRS \exists minimal non-terminating term					
all proper subterms are terminating					
$ ightarrow \mathcal{T}_{\infty}$ is set of all minimal non-terminating terms					
Lemma					
$orall t \in \mathcal{T}_{\infty} \ \exists (I ightarrow r) \in \mathcal{R} \ \exists \sigma \ \exists non-variable \ subterm \ u \ of \ r$					
$t \xrightarrow{>\epsilon} {}^*_{\mathcal{R}} \ l\sigma \xrightarrow{\epsilon}_{\mathcal{R}} r\sigma \trianglerighteq u\sigma \in \mathcal{T}_{\infty}$					
Corollary					
every term in \mathcal{T}_∞ has defined root symbol					
 Advanced Topics in Term Rewriting G. Moser 2					
Dependency Pairs					
TRS ${\mathcal R}$ over signature ${\mathcal F}$					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$ $DP(\mathcal{R}) = \{\int^{\sharp}_{\infty} \rightarrow u^{\sharp} \mid (l \rightarrow r) \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \leq l\}$ dependency pair					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$ $DP(\mathcal{R}) = \{\int^{\sharp}_{\infty} \rightarrow u^{\sharp} \mid (l \rightarrow r) \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \leq l\}$ dependency pair					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$ $DP(\mathcal{R}) = \{\int^{\sharp}_{-} \rightarrow u^{\sharp} \mid (l \rightarrow r) \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \leq l\}$ dependency pair Lemma					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$ DP(\mathcal{R}) = $\{\int^{\sharp}_{\infty} \rightarrow u^{\sharp} \mid (l \rightarrow r) \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \not \leq l\}$ dependency pair Lemma $\forall s \in \mathcal{T}_{\infty} \exists t, u \in \mathcal{T}_{\infty} \qquad s^{\sharp} \rightarrow_{\mathcal{R}}^{*} t^{\sharp} \rightarrow_{DP(\mathcal{R})} u^{\sharp}$					
TRS \mathcal{R} over signature \mathcal{F} $\Rightarrow \mathcal{F}^{\sharp} = \mathcal{F} \cup \{f^{\sharp} \mid f \text{ is defined symbol of } \mathcal{R}\}$ $\Rightarrow \text{ if } t = f(t_1, \dots, t_n) \text{ with } f \text{ defined then } t^{\sharp} = f^{\sharp}(t_1, \dots, t_n)$ $\Rightarrow \mathcal{T}^{\sharp}_{\infty} = \{t^{\sharp} \mid t \in \mathcal{T}_{\infty}\}$ $DP(\mathcal{R}) = \{\int^{\sharp}_{-} \rightarrow u^{\sharp} \mid (l \rightarrow r) \in \mathcal{R}, u \leq r \text{ with defined root}(u), u \not \land l\}$ dependency pair $\forall s \in \mathcal{T}_{\infty} \exists t, u \in \mathcal{T}_{\infty} \qquad s^{\sharp} \rightarrow^{*}_{\mathcal{R}} t^{\sharp} \rightarrow_{DP(\mathcal{R})} u^{\sharp}$ $\boxed{Corollary}$					

Advanced	Topics	in	Term	Rewriting
----------	--------	----	------	-----------

Advanced Topics in Term Rewriting

Dependency Pairs

$$\begin{array}{c}
0 - y \rightarrow 0 \\
x - 0 \rightarrow x \\
rewrite rules
\\
S(x) - S(y) \rightarrow x - y \\
0 \div S(y) \rightarrow 0 \\
S(x) \div S(y) \rightarrow S((x - y) \div S(y))
\\
(dependency pairs
\\
S(x) \stackrel{d}{\rightarrow} S(y) \rightarrow x \stackrel{d}{\rightarrow} y \\
S(x) \stackrel{d}{\rightarrow} S(y) \rightarrow x \stackrel{d}{\rightarrow} y \\
S(x) \stackrel{d}{\rightarrow} S(y) \rightarrow x \stackrel{d}{\rightarrow} y \\
(dependency pairs
\\
S(x) \stackrel{d}{\rightarrow} S(y) \rightarrow x \stackrel{d}{\rightarrow} y \\
S(x) \stackrel{d}{\rightarrow} S(y) \rightarrow x \stackrel{d}{\rightarrow} y \\
(frequency pairs)
\\
\hline
Theorem
\\
\forall non-terminating TRS R \exists infinite rewrite sequence
\\
t_1 \stackrel{d}{\rightarrow}_R t_2 \rightarrow DP(R) t_3 \stackrel{d}{\rightarrow}_R t_4 \rightarrow DP(R) t_5 \dots \\
with t_i \in T_{\infty}^d \text{ for all } i
\\
\hline
Theorem
\\
\hline
Poendercy Pairs
\\
\hline
\text{Valued Topics in Term Rewrite
}
\\
\qquad (f_A) \left\{ f_A \right\}_{f \in \mathcal{F}} \right) \text{ together with proper order $\succ \text{ on } A$ such that every f_A is weakly monotone in all coordinates
$$\Rightarrow \text{ binary relations } \succ_A, \succeq_A \text{ on terms:}$$

$$s \succ_A t \iff [\alpha]_A(s) \succeq [\alpha]_A(t) \text{ for all assignments } \alpha \\
s \succeq_A t \iff [\alpha]_A(s) \succeq [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \succeq_A t \iff [\alpha]_A(s) \succeq [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \succeq [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \succeq [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(t) \text{ for all assignments } \alpha \\
\qquad S \leftarrow_A t \iff [\alpha]_A(s) \vdash [\alpha]_A(s) \vdash [\alpha]_A(s) = [\alpha]_A(s$$$$

G. Moser

ependency Pairs

Definition

reduction pair ($\succsim,\succ)$ consists of preorder \succsim and well-founded order \succ such that

- $\mathbf{1}~\succsim$ is closed under contexts and substitutions
- **2** \succ is closed under substitutions

 $\underline{\mathbf{3}} \hspace{0.2em} \succeq \hspace{-0.2em} \cdot \hspace{-0.2em} \succ \hspace{-0.2em} \cdot \hspace{-0.2em}$

Theorem

7

TRS $\mathcal R$ is terminating if \exists reduction pair ($\succsim,\succ)$ such that $1 \hspace{0.1cm} I \succeq r \hspace{0.1cm} \forall \hspace{0.1cm} (I \rightarrow r) \in \mathcal{R}$ $I \succ r \quad \forall \ (I \rightarrow r) \in \mathsf{DP}(\mathcal{R})$

Advanced Topics in Term Rewriting	G. Moser	6
Dependency Pairs		
	$0 - \mathbf{v} \geq \mathbf{c} = 0$	
	0 - y - A = 0	
	$x - 0 \succeq_{\mathcal{A}} x$	
constraints ${\cal R}$	$S(x) - S(y) \succeq_{\mathcal{A}} x - y$	
	$0 \div S(y) \succeq_{\mathcal{A}} 0$	
	$S(x) \div S(y) \succ A S((x-y) \div S(y))$)
	$=()^{-1} = (0)^{-1} = (0)^{-1} = (0)^{-1}$	/
constraints $DP(\mathcal{P})$	$S(x) \xrightarrow{-\pi} S(y) \succ_{\mathcal{A}} x \xrightarrow{-\pi} y$	
constraints DI (<i>IC</i>)	$S(x) \div^{\#} S(y) \succ_{\mathcal{A}} (x - y) \div^{\#} S(y)$	
	$S(x) \div^{\sharp} S(y) \succ_{\mathcal{A}} x -^{\sharp} y$	
\mathcal{A}	domain $\mathbb N$ order $>$	
	$0_{A} = 0$ $S_{A}(n) = n + 1$	
(
$-\mathcal{A}(n,m) = -$	$\mathcal{A}(n,m) = -\mathcal{A}(n,m) = -\mathcal{A}(n,m) = n$	
	`	
\rightarrow reduction pair (\succeq	$_{\mathcal{A}}, \succ_{\mathcal{A}})$	
Advanced Topics in Term Rewriting	G. Moser	8