Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

G. Moser

-1

rewrite rules

$$\begin{array}{cccc}
0 - y \to 0 & S(x) \div S(y) \to S((x - y) \div S(y)) \\
x - 0 \to x & 0 + y \to y \\
S(x) - S(y) \to x - y & S(x) + y \to S(x + y) \\
0 \div S(y) \to 0 & (x - y) - z \to x - (y + z)
\end{array}$$

dependency pairs

①
$$S(x) - \sharp S(y) \to x - \sharp y$$

② $S(x) \div \sharp S(y) \to (x - y) \div \sharp S(y)$
③ $S(x) \div \sharp S(y) \to x - \sharp y$
④ $S(x) + \sharp y \to x + \sharp y$
⑤ $(x - y) - \sharp z \to x - \sharp (y + z)$
⑥ $(x - y) - \sharp z \to y + \sharp z$

dependency graph

5 cycles {1}, {2}, {4}, {5}, {1,5}

Theorem

 \forall non-terminating TRS \mathcal{R} \exists cycle \mathcal{C} in $\mathsf{DG}(\mathcal{R})$

 $\exists \mathcal{C}$ -minimal rewrite sequence $t_1 \to_{\mathcal{R}}^* t_2 \to_{\mathcal{C}} t_3 \to_{\mathcal{R}}^* t_4 \to_{\mathcal{C}} \cdots$

Idea

project each dependency symbol in $\mathcal C$ to fixed argument position

$$\pi(t_1) \rightarrow_{\mathcal{R}}^* \pi(t_2)$$
 ? $\pi(t_3) \rightarrow_{\mathcal{R}}^* \pi(t_4)$? ...

Observation

- $woheadrightarrow \pi(t_1)$ is terminating with respect to $o_{\mathcal R}$ (because $t_1 \in \mathcal T_{\infty}^{\sharp}$)
- ightharpoonup and also with respect to $\to_{\mathcal{R}} \cup \triangleright$ (recall $\triangleright \cdot \to_{\mathcal{R}} \subseteq \to_{\mathcal{R}} \cdot \triangleright$)

require: $\forall I \rightarrow r \in \mathcal{C}$ $\pi(I) \trianglerighteq \pi(r)$ and $\exists I \rightarrow r \in \mathcal{C}$ $\pi(I) \trianglerighteq \pi(r)$

Advanced Topics in Term Rewriting

G. Moser

3

Subterm Criterion

Definition

- ⇒ simple projection for cycle \mathcal{C} in DG(\mathcal{R}) is mapping π that assigns to every n-ary dependency pair symbol f^{\sharp} in \mathcal{C} one of its argument positions
- ightharpoonup extension of π to terms in \mathcal{T}^{\sharp} : $\pi(f^{\sharp}(t_1,\ldots,t_n))=t_{\pi(f^{\sharp})}$

Theorem

if \exists simple projection π for cycle $\mathcal C$ in $\mathsf{DG}(\mathcal R)$ such that

1
$$\forall I \rightarrow r \in \mathcal{C}$$
 $\pi(I) = \pi(r)$ or $\pi(I) \rhd \pi(r)$ $\pi(\mathcal{C}) \subseteq \succeq$

$$\exists \ I \to r \in \mathcal{C} \quad \pi(I) \rhd \pi(r)$$

$$\pi(\mathcal{C}) \cap \rhd \neq \varnothing$$

then $\neg \exists \mathcal{C}$ -minimal rewrite sequence

rewrite rules

$$\begin{array}{ccc}
0 - y \to 0 & S(x) \div S(y) \to S((x - y) \div S(y)) \\
x - 0 \to x & 0 + y \to y \\
S(x) - S(y) \to x - y & S(x) + y \to S(x + y) \\
0 \div S(y) \to 0 & (x - y) - z \to x - (y + z)
\end{array}$$

dependency pairs

 $S(x) - \sharp S(y) \to x - \sharp y$ $S(x) \div \sharp S(y) \to (x - y) \div \sharp S(y)$ $S(x) \div \sharp S(y) \to x - \sharp y$ $S(x) + \sharp y \to x + \sharp y$ $(x - y) - \sharp z \to x - \sharp (y + z)$ $(x - y) - \sharp z \to y + \sharp z$

dependency graph

5 cycles $\{0\}$, $\{2\}$, $\{4\}$, $\{5\}$, $\{0,5\}$ subterm criterion applies

Advanced Topics in Term Rewriting

G. Moser

_

Theorem

if \exists argument filtering π and \exists reduction pair (\succsim,\succ) such that

- 1 $\pi(\mathcal{R}) \subseteq \succeq$
- $2 \pi(\mathcal{C}) \subseteq \succeq \cup \succ$
- $\pi(\mathcal{C}) \cap \succ \neq \emptyset$

then $\neg \exists \mathcal{C}$ -minimal rewrite sequence

rewrite rules
$$0-y \rightarrow 0$$
 $0+y \rightarrow y$ $x-0 \rightarrow x$ $S(x)+y \rightarrow S(x+y)$ $S(x)-S(y) \rightarrow x-y$ $(x-y)-z \rightarrow x-(y+z)$ $0\div S(y) \rightarrow 0$ $S(x)\div S(y) \rightarrow S((x-y)\div S(y))$

dependency pair ② $S(x) \div^{\sharp} S(y) \rightarrow (x - y) \div^{\sharp} S(y)$

cycle $\{2\}$ AF $\pi(-)=1$ LPO with $\div \supset S$ $\div^{\sharp} \supset -^{\sharp}$