Advanced Topics in Term Rewriting LVA 703610

http://cl-informatik.uibk.ac.at/teaching/ws06/attr/

Georg Moser

office hours: Tuesday, 16:00-18:00 (3M09)

Advanced Topics in Term Rewriting

G. Moser

1

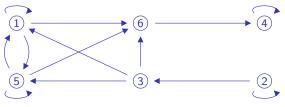
rewrite rules

$$\begin{array}{ccc}
0 - y \to 0 & S(x) \div S(y) \to S((x - y) \div S(y)) \\
x - 0 \to x & 0 + y \to y \\
S(x) - S(y) \to x - y & S(x) + y \to S(x + y) \\
0 \div S(y) \to 0 & (x - y) - z \to x - (y + z)
\end{array}$$

dependency pairs

① $S(x) \stackrel{\sharp}{\to} S(y) \to x \stackrel{\sharp}{\to} y$ ② $S(x) \stackrel{\sharp}{\div} S(y) \to (x-y) \stackrel{\sharp}{\div} S(y)$ ⑤ $(x-y) \stackrel{\sharp}{\to} z \to x \stackrel{\sharp}{\to} (y+z)$ ③ $S(x) \stackrel{\sharp}{\div} S(y) \to x \stackrel{\sharp}{\to} y$ ⑥ $(x-y) \stackrel{\sharp}{\to} z \to y + \sharp z$

dependency graph



5 cycles $\{0\}$, $\{2\}$, $\{4\}$, $\{5\}$, $\{1,5\}$

Advanced Topics in Term Rewriting

G Mosor

Theorem

 \forall non-terminating TRS \mathcal{R} \exists cycle \mathcal{C} in DG(\mathcal{R})

 $\exists \mathcal{C}$ -minimal rewrite sequence $t_1 \to_{\mathcal{R}}^* t_2 \to_{\mathcal{C}} t_3 \to_{\mathcal{R}}^* t_4 \to_{\mathcal{C}} \cdots$

 $\ensuremath{\mathsf{project}}$ each dependency symbol in $\ensuremath{\mathcal{C}}$ to fixed argument position

$$\pi(t_1) \rightarrow_{\mathcal{R}}^* \pi(t_2)$$
 ? $\pi(t_3) \rightarrow_{\mathcal{R}}^* \pi(t_4)$? ...

Observation

- riangledown $\pi(t_1)$ is terminating with respect to $o_{\mathcal R}$ (because $t_1 \in \mathcal T_{\infty}^{\sharp}$)
- ightharpoonup and also with respect to $\rightarrow_{\mathcal{R}} \cup \triangleright$ (recall $\triangleright \cdot \rightarrow_{\mathcal{R}} \subseteq \rightarrow_{\mathcal{R}} \cdot \triangleright$)

Idea

require: $\forall I \rightarrow r \in \mathcal{C} \quad \pi(I) \trianglerighteq \pi(r) \quad \text{and} \quad \exists I \rightarrow r \in \mathcal{C} \quad \pi(I) \trianglerighteq \pi(r)$

Subterm Criterion

Definition

- ⇒ simple projection for cycle $\mathcal C$ in DG($\mathcal R$) is mapping π that assigns to every n-ary dependency pair symbol f^\sharp in $\mathcal C$ one of its argument positions
- ightharpoonup extension of π to terms in \mathcal{T}^{\sharp} : $\pi(f^{\sharp}(t_1,\ldots,t_n))=t_{\pi(f^{\sharp})}$

Theorem

if \exists simple projection π for cycle \mathcal{C} in $\mathsf{DG}(\mathcal{R})$ such that

$$\exists I \to r \in \mathcal{C} \quad \pi(I) \rhd \pi(r) \qquad \qquad \pi(\mathcal{C}) \cap \rhd \neq \varnothing$$

then $\neg \exists \mathcal{C}$ -minimal rewrite sequence

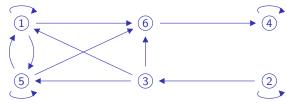
rewrite rules

$$\begin{array}{ccc}
0 - y \to 0 & S(x) \div S(y) \to S((x - y) \div S(y)) \\
x - 0 \to x & 0 + y \to y \\
S(x) - S(y) \to x - y & S(x) + y \to S(x + y) \\
0 \div S(y) \to 0 & (x - y) - z \to x - (y + z)
\end{array}$$

dependency pairs

①
$$S(x) - \sharp S(y) \to x - \sharp y$$
 ② $S(x) \div \sharp S(y) \to (x - y) \div \sharp S(y)$ ③ $S(x) \div \sharp S(y) \to (x - y) \div \sharp S(y)$ ⑤ $S(x) \div \sharp S(y) \to (x - y) \div \sharp S(y)$ ⑥ $S(x) \div \sharp S(y) \to (x - y) + \sharp Z$

dependency graph



5 cycles $\{0\}$, $\{0\}$, $\{0\}$, $\{0, 5\}$ subterm criterion applies

Theorem

if \exists argument filtering π and \exists reduction pair (\succeq, \succ) such that

1
$$\pi(\mathcal{R}) \subseteq \mathbb{k}$$

$$2 \pi(\mathcal{C}) \subseteq \succeq \cup \succ$$

$$\pi(\mathcal{C}) \cap \succ \neq \emptyset$$

then $\neg \exists \mathcal{C}$ -minimal rewrite sequence

dependency pair ②
$$S(x) \div^{\sharp} S(y) \rightarrow (x - y) \div^{\sharp} S(y)$$

cycle
$$\{2\}$$
 AF $\pi(-)=1$ LPO with $\div \supset S$ $\div^{\sharp} \supset -^{\sharp}$

Advanced Topics in Term Rewriting

G. Moser

Advanced Topics in Term Rewriting

5

G. Moser

6