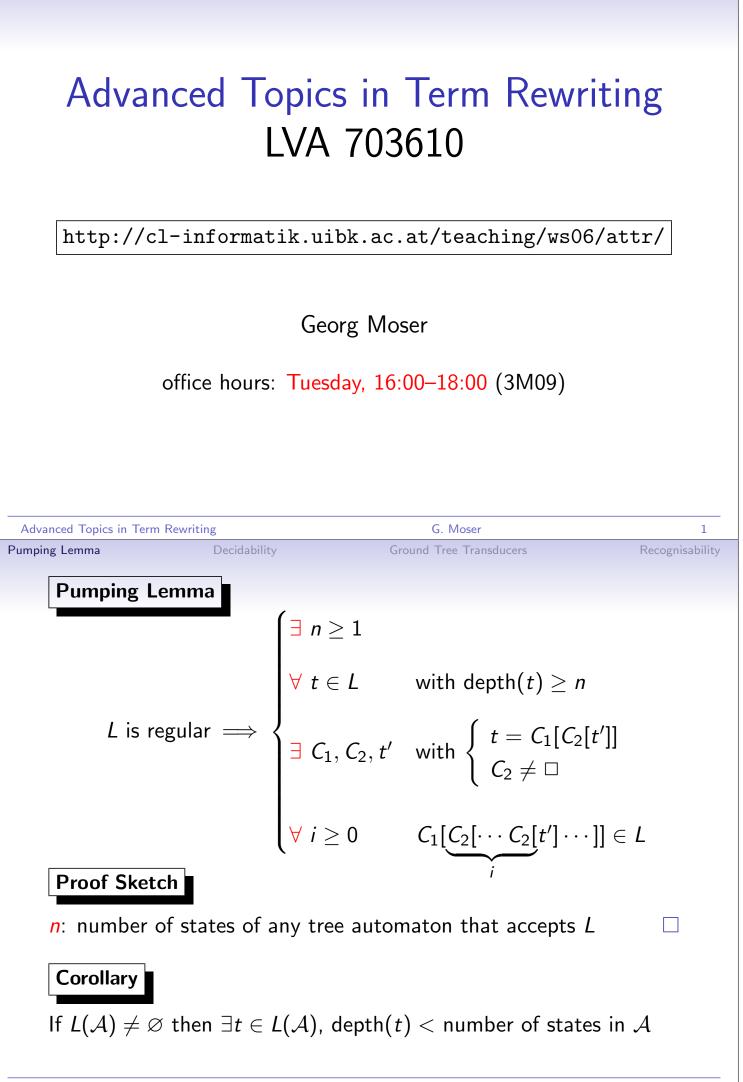
Recognisability



Advanced Topics in Term Rewriting

2

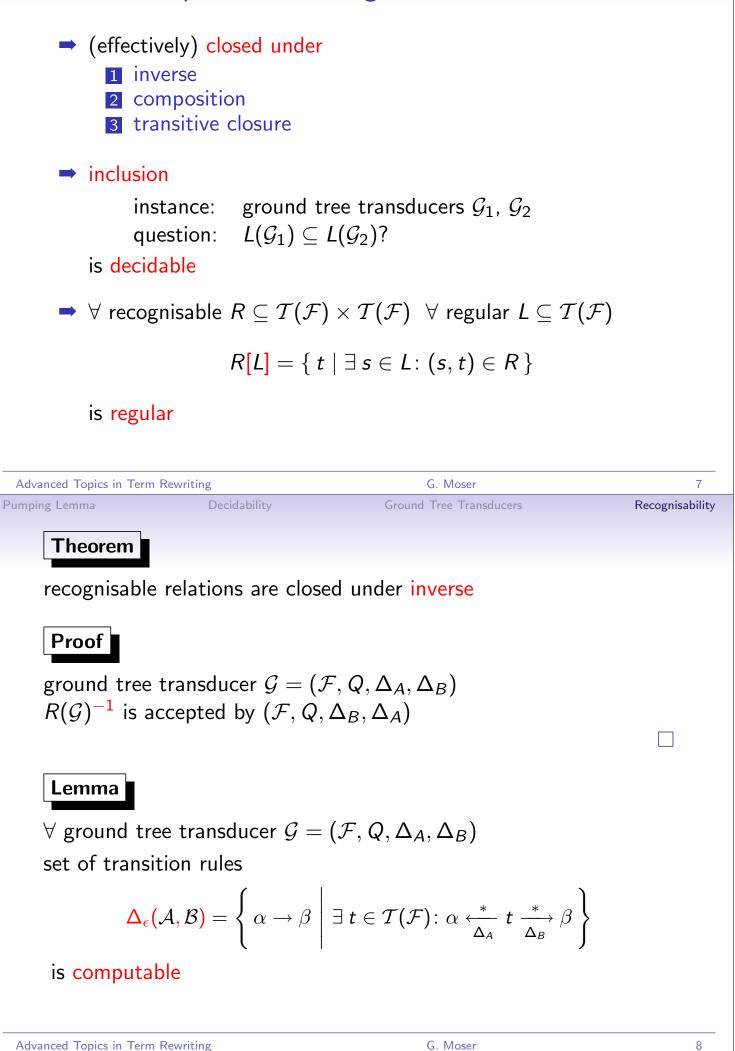
Pumping Lemma	Decidability	Ground Tree Transducers	Recognisability	
Decidability				
Theorem				
➡ member	ship			
instance				
•	: $t \in L(\mathcal{A})$?			
emptine instance		$r \exists \ t \in L(\mathcal{A})$: depth $(t) < Q $ on \mathcal{A}		
	: $L(\mathcal{A}) = \emptyset$?			
➡ finitenes	s ↔ -	$r \exists t \in L(\mathcal{A}) \colon \mathcal{Q} \leqslant depth(t)$	() < 2 Q	
	instance: tree automaton \mathcal{A}			
question inclusion	: $L(\mathcal{A})$ is finite	<u>'</u>		
instance				
question	: $L(\mathcal{A}_1) \subseteq L(\mathcal{A})$	₂)?		
are decidable	problems			
Advanced Topics in Term F Pumping Lemma	Rewriting Decidability	G. Moser Ground Tree Transducers	3 Recognisability	
Words and Terms				
	vorus			
Definition				
1 vield(L)	$=$ { yield(t) t \in	: <i>L</i> }		
		,		
2 yield (t)	$= \begin{cases} c \\ vield(t_1) \cdots v \end{cases}$	if $t = a$ yield (t_n) if $t = f(t_1, \dots, t_n)$)	
	() ())	
Theorem				
		6		
	t-free word gram	imar G regular tree language		
	r tree language <i>L</i>			
yield(L) is context-free word language				

rightarrow ground tree transducer is pair $\mathcal{G} = (\mathcal{A}, \mathcal{B})$ of tree automata $\mathcal{A} = (\mathcal{F}, Q_A, -, \Delta_A)$ $\mathcal{B} = (\mathcal{F}, Q_B, -, \Delta_B)$ \rightarrow relation accepted by \mathcal{G} : $R(\mathcal{G}) = \{ (s, t) \mid s \xrightarrow{*}_{\Delta_A} \cdot \xleftarrow{*}_{\Delta_B} t \}$ \Rightarrow $R \subseteq \mathcal{T}(\mathcal{F}) \times \mathcal{T}(\mathcal{F})$ is recognisable if $R = R(\mathcal{G})$ for some ground tree transducer \mathcal{G} G. Moser Advanced Topics in Term Rewriting Pumping Lemma Ground Tree Transducers Recognisability Theorem $\#_{\mathcal{R}}$ is recognisable for finite left-linear right-ground \mathcal{R} Proof by Example $0 + \gamma \rightarrow S(0)$ $S(x) + y \rightarrow S(0+0)$ \mathcal{R} $0 \times y \rightarrow 0$ $S(x) \times y \rightarrow 0 + 0$ $\#_{\mathcal{R}} = R(\mathcal{G}) \qquad \mathcal{G} = (\mathcal{A}, \mathcal{B})$ 0 $0 \rightarrow 0$ \rightarrow * $S(*) \rightarrow *$ $0+0 \rightarrow 0+0$ $S(*) \rightarrow S(*) S(*) \times * \rightarrow 4$ $4 \leftarrow 0 + 0$

Advanced Topics in Term Rewriting

6

5



Decidability **Pumping Lemma** Ground Tree Transducers Theorem recognisable relations are closed under composition Proof ground tree transducer $\mathcal{G}_1 = (\mathcal{F}, Q_1, \Delta_{A_1}, \Delta_{B_1})$ ground tree transducer $\mathcal{G}_2 = (\mathcal{F}, Q_2, \Delta_{A_2}, \Delta_{B_2})$ wlog $Q_1 \cap Q_2 = \emptyset$ $R(\mathcal{G}_1) \cdot R(\mathcal{G}_2)$ is accepted by $\mathcal{G} = (\mathcal{F}, Q, \Delta_A, \Delta_B)$ with $\Rightarrow Q = Q_1 \cup Q_2$ $\Rightarrow \Delta_{\mathcal{A}} = \Delta_{\mathcal{A}_1} \cup \Delta_{\mathcal{A}_2} \cup \Delta_{\epsilon}(\mathcal{B}_1, \mathcal{A}_2)$ $\Rightarrow \Delta_B = \Delta_{B_1} \cup \Delta_{B_2} \cup \Delta_{\epsilon}(\mathcal{A}_2, \mathcal{B}_1)$ Advanced Topics in Term Rewriting G. Moser 9 Ground Tree Transducers Recognisability **Pumping Lemma** Theorem recognisable relations are closed under transitive closure Proof ground tree transducer $\mathcal{G} = (\mathcal{F}, Q, \Delta_A, \Delta_B)$ define $\mathcal{G}_i = (\mathcal{F}, Q, \Delta_{A_i}, \Delta_{B_i})$ with $R(\mathcal{G})^+$ is accepted by \mathcal{G}_n for *n* with $\mathcal{G}_n = \mathcal{G}_{n+1}$

Decidability

Recognisability

