
University of Innsbruck Institute of Computer Science
1st Exam Friday, January 25, 2008, 14:00–16:00

Functional Programming

This exam consists of five exercises. Explain your answers. The available points
for each item are written in the margin. You need at least 50 points to pass.

1 Consider the OCaml function let s x = x * x.

(a) Evaluate the function call s (s 10) stepwise, using leftmost innermost reduction.[10]

(b) Evaluate the function call s (s 10) stepwise, using leftmost outermost reduction.[10]

2 Consider the OCaml type type tree = E | N of tree * tree together with the function

let rec mirror = function
| E -> E
| N (l, r) -> N (mirror r, mirror l)
;;

Prove by induction that mirror (mirror t) = t for every value t of type tree.

(a) Base case.[5]

(b) Step case.[15]

3 Consider the OCaml functions f and g:

let rec f x = if x / 2 = 0 then 0 else 1 + f (x / 2);;
let rec g x = if x < 2 then 1 else g (x - 1) + 2 * g (x - 2);;

(a) Give a tail recursive variant of f.[10]

(b) Use tupling to implement a more efficient variant of g.[10]

4 Consider the λ-term t = (λx.y x) (λy.(λy.y) z).

(a) Reduce t to normal form.[5]

(b) Give the set FVar(t) of free variables of t.[5]

(c) Give the set BVar(t) of bound variables of t.[5]

(d) Give the set Sub(t) of all subterms of t.[5]

5 Consider the typing environment

E = {1 : int, 2 : int, cons : int → list(int) → list(int),
hd : list(int) → int, nil : list(int), tl : list(int) → list(int)}.

(a) Prove the typing judgment E ` let x = tl (cons 1 (cons 2 nil)) in hd x : int.[10]

(b) Solve the unification problem.[10]

α3 → list(α3) → list(α3) ≈ α2 → α1 → α4;
bool ≈ α2;

list(α0) ≈ α1;
list(α0) ≈ α4

