
University of Innsbruck Institute of Computer Science
2nd Exam Friday, February 29, 2008, 14:00–16:00

Functional Programming

This exam consists of five exercises. Explain your answers. The available points
for each item are written in the margin. You need at least 50 points to pass.

1 Consider the lambda-term t = (λxyz.x z (y z)) (λxy.x) (λx.x) (λx.x).

(a) Reduce t stepwise to normal form, using the leftmost innermost strategy.[10]

(b) Reduce t stepwise to normal form, using the leftmost outermost strategy.[10]

2 Consider the OCaml type type ’a tree = E | N of ’a tree * ’a * ’a tree together with
the functions

let rec preorder = function
| E -> []
| N (l, a, r) -> a :: (preorder l @ preorder r)
;;

let rec sum_tree = function
| E -> 0
| N (l, a, r) -> a + (sum_tree l + sum_tree r)
;;

let rec sum = function
| [] -> 0
| x :: xs -> x + (sum xs)
;;

Prove by induction that sum (preorder t) = sum tree t for every value t of type int tree.
You may use the equality

sum (xs @ ys) = (sum xs) + (sum ys) (?)

for all integer lists xs and ys.

(a) Base case.[ 5]

(b) Step case.[15]
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3 Consider the OCaml functions mem and unique

let rec mem y = function
| [] -> false
| x :: xs -> x = y || mem y xs
;;

let rec unique = function
| [] -> []
| x :: xs ->
if mem x xs then unique xs else x :: unique xs

;;

(a) Implement a tail-recursive variant of unique.[10]

(b) Use tupling to implement a function percentage : ’a -> ’a list -> float that de-[10]
termines for a given element x in a list xs the percentage it constitutes to the full list,
e.g.,

percentage ’a’ [’a’;’b’;’c’;’a’] = 0.5.

4 Consider the λ-term t = (λx.y x) (λyz.z y) w.

(a) Reduce t to normal form.[ 5]

(b) Give the set FVar(t) of free variables of t.[ 5]

(c) Give the set BVar(t) of bound variables of t.[ 5]

(d) Give the set Sub(t) of all subterms of t.[ 5]

5 Consider the typing environment

E = {1 : int, + : int → int → int, p : int → int → pair(int, int)}.

(a) Prove the typing judgment E ` let x = 1 in p x (x + x) : pair(int, int).[10]

(b) Transform the type inference problem E B let x = 1 in p x (x+x) : α0 into a unification[10]
problem.


