Functional Programming

This exam consists of five exercises. Explain your answers. The available points for each item are written in the margin. You need at least 50 points to pass.
$1 \quad$ Consider the lambda-term $t=(\lambda x y z \cdot x z(y z))(\lambda x y \cdot x)(\lambda x \cdot x)(\lambda x \cdot x)$.
[10] (a) Reduce t stepwise to normal form, using the leftmost innermost strategy.

2 Consider the OCaml type type 'a tree $=\mathrm{E} \| \mathrm{N}$ of 'a tree * 'a * 'a tree together with the functions

```
let rec preorder = function
    | E -> []
    | N (l, a, r) -> a :: (preorder l @ preorder r)
; ;
let rec sum_tree = function
    E \(\quad\)->
    | N (l, a, r) -> a + (sum_tree l + sum_tree r)
; ;
let rec sum \(=\) function
    | [] \(\quad \rightarrow 0\)
    | \(\mathrm{x}:\) : xs -> \(\mathrm{x}+(\) sum xs\()\)
; ;
```

Prove by induction that sum (preorder t) = sum_tree t for every value t of type int tree. You may use the equality

$$
\operatorname{sum}(x s @ y s)=(\operatorname{sum} x s)+(\operatorname{sum} y s)
$$

for all integer lists $x s$ and $y s$.
[5] (a) Base case.
(b) Step case.

```
let rec mem y = function
    | [] -> false
    | x :: xs -> x = y || mem y xs
;;
let rec unique = function
    | [] -> []
    | x :: xs ->
    if mem x xs then unique xs else x :: unique xs
;;
```

(a) Implement a tail-recursive variant of unique.
(b) Use tupling to implement a function percentage: 'a -> 'a list -> float that determines for a given element x in a list $x s$ the percentage it constitutes to the full list, e.g.,

```
percentage 'a' ['a';'b';'c';'a'] = 0.5.
```

Consider the λ-term $t=(\lambda x . y x)(\lambda y z . z y) w$.
[5] (a) Reduce t to normal form.
(b) Give the set $\mathcal{F} \mathcal{V} \operatorname{ar}(t)$ of free variables of t.
(c) Give the set $\mathcal{B} \operatorname{Var}(t)$ of bound variables of t.
(d) Give the set $\mathcal{S u b}(t)$ of all subterms of t.

5 Consider the typing environment

$$
E=\{1: \text { int },+: \text { int } \rightarrow \text { int } \rightarrow \text { int, } \mathrm{p}: \text { int } \rightarrow \text { int } \rightarrow \text { pair(int, int })\} .
$$

(a) Prove the typing judgment $E \vdash$ let $x=1$ in $\mathrm{p} x(x+x)$: pair(int, int).
(b) Transform the type inference problem $E \triangleright$ let $x=1$ in $\mathrm{p} x(x+x): \alpha_{0}$ into a unification problem.

