[10]
[10]

[8]
[15]

UNIVERSITY OF INNSBRUCK INSTITUTE OF COMPUTER SCIENCE
2ND ExaM FrIDAY, FEBRUARY 29, 2008, 14:00-16:00

Functional Programming

This exam consists of five exercises. Explain your answers. The available points
for each item are written in the margin. You need at least 50 points to pass.

Consider the lambda-term t = (A\zyz.x z (y 2)) (Azy.z) (A\z.x) (Az.z).

(a) Reduce t stepwise to normal form, using the leftmost innermost strategy.

(b) Reduce t stepwise to normal form, using the leftmost outermost strategy.

Consider the OCaml type type ’a tree = E | N of ’a tree * ’a * ’a tree together with
the functions

let rec preorder = function
| E -> [
| N (1, a, r) -> a :: (preorder 1 @ preorder r)

)

let rec sum_tree = function
| E -> 0
| N (1, a, r) -> a + (sum_tree 1 + sum_tree 1)

)

let rec sum = function
| [-> 0
| x :: xs -> x + (sum xs)

’

Prove by induction that sum (preorder t) = sum_tree t for every value t of type int tree.
You may use the equality

sum (zs @ys) = (sum zs) + (sum ys) (%)
for all integer lists s and ys.

(a) Base case.

(b) Step case.

Turn Over Turn Over Turn Over

[10]
[10]

[5]
[5]
[5]
[5]

[10]
[10]

Consider the OCaml functions mem and unique

let rec mem y = function
| [-> false
| x :: x8 > x =1y || mem y xs

0

let rec unique = function

|] -> []
| x :: xs ->
if mem x xs then unique xs else x :: unique xs

’

(a) Implement a tail-recursive variant of unique.

(b) Use tupling to implement a function percentage: ’a -> ’a list -> float that de-
termines for a given element z in a list xs the percentage it constitutes to the full list,

e.g.,
percentage ’a’ [’a’;’b’;’c’;’a’] = 0.5.

Consider the M-term ¢t = (Az.y z) (Ayz.z y) w.

Consider the typing environment
E={1:int, +:int — int — int, p:int — int — pair(int,int)}.

(a) Prove the typing judgment F let x =1 in p = (z +) : pair(int, int).

(b) Transform the type inference problem E>let x =1 in p z (z+z) : ap into a unification
problem.

