
Functional Programming
WS 2007/08

Christian Sternagel1 (VO + PS)
Friedrich Neurauter2 (PS)

Harald Zankl3 (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

9 November 2007
1christian.sternagel@uibk.ac.at
2friedrich.neurauter@uibk.ac.at
3harald.zankl@uibk.ac.at

CS (ICS@UIBK) FP OCaml Bash

http://cl-informatik.uibk.ac.at
file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Summary of Week 3

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Summary of Week 3

Exercises

The first test has been moved to November 30

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Summary of Week 3

L-Strings

I strings not functional in OCaml

I therefore use module Strng

Strings as character lists

type t = char list
val center : int −> t −> t
val join : ’a list −> ’a list list −> ’a list
val left justify : int −> t −> t
val of int : int −> t
val of string : string −> t
val print : t −> unit
val right justify : int −> t −> t
val to string : t −> string
val toplevel printer : t −> unit

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Summary of Week 3

Setting Up the Interpreter

I .ocamlinit (searched in

current directory︷︸︸︷
. and

home directory︷︸︸︷
~)

I write modules for custom interpreter to file.mltop

I compile with ‘ocamlbuild file.top‘

I start with ‘./file.top‘

Example

Lst
Picture
Strng

w03.mltop

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Rooted Trees

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Rooted Trees

What Are Trees?

Definition (Tree)

(rooted) tree T = (N,E)

I set of nodes N

I set of edges E ⊆ N × N

I unique root of T
(root(T) ∈ N) without
predecessor

I all other nodes have
exactly one predecessor

Example

I N = {a, b, c , d , e, f , g}
I E =
{(a, b), (a, c), (a, e), (c , d), (e, f), (e, g)}

I root(T) = a

I T =

a

b c

d

e

f g

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Rooted Trees

Trees in OCaml

Type

type ’a tree =

empty tree︷ ︸︸ ︷
Empty | Node︸ ︷︷ ︸

node with content

of ’a ∗ ’a tree list;;

Example

1

2

Empty Node (1, [Node (2, [])])

1

1

2 3

Node (1, []) Node (1, [Node (2, []); Node (3, [])])

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Restricting the Branching-Factor

Definition (Binary tree)

restrict number of successors (maximal 2)

Type

type ’a btree = Empty | Node of ’a btree ∗ ’a ∗ ’a btree;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Functions on BinTrees

Definition (Size)

size of a tree equals
number of nodes

let rec size = function
| Empty −> 0
| Node (l, , r) −> size l + size r + 1

;;

Definition (Height)

height of a tree equals
length of longest path
from root to some
leaf plus 1

let rec height = function
| Empty −> 0
| Node (l, , r) −> max (height l) (height r) + 1

;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Example

I size T = 5

I height T = 3

a

b c

d e

T =

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Creating Trees of Lists

The easy way

let rec of list = function
| [] −> Empty
| x :: xs −> Node (Empty, x, of list xs)

;;

Example

of list [1;2;3;4] →

1

2

3

4

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)

The fair way

let rec make = function
| [] −> Empty
| xs −>
let m = Lst.length xs / 2 in
let (ys, zs) = Lst.split at m xs in
Node (make ys, Lst.hd zs, make (Lst.tl zs))

;;

Example

make [1;2;3;4] →+

3

2

1

4

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)

Ordered insertion

let rec insert c v = function
| Empty −> Node (Empty, v, Empty)
| Node (l, w, r) −>
if c v w <= 0 then Node (insert c v l, w, r) else Node (l, w, insert c v r)

;;

Example

insert compare 2

3

1

0

4 →+

3

1

0

4

2<

2>

2

2

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)

Search trees

let search tree c xs = Lst.fold left (fun x y −> insert c y x) Empty xs;;

Example

search tree compare [3; 1; 0; 4; 2] →+

3

1

0

4

2

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

Transforming Trees Into Lists

Flatten

let rec flatten = function
| Empty −> []
| Node (l, x, r) −> (flatten l) @ (x :: flatten r)

;;

Example

flatten

3

1

0 2

4 →+ [0; 1; 2; 3; 4]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Binary Trees

A Sorting Algorithm for Lists

let sort c xs = BinTree.flatten (BinTree.search tree c xs);;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

The Idea

Reduce storage size

I ASCII uses 1 byte per character

I encode frequent characters ‘short’

Example

Text: ‘text’

I 32 bits in ASCII (01110100011001010111100001110100)

I using
t 7→ 0
e 7→ 10
x 7→ 11

6 bits needed (010110)

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Some More Useful List Functions

| x :: xs as ys −> if p x then drop while p xs else ys
;;
let span p xs = (take while p xs, drop while p xs);;
let rev xs =
let rec rev acc = function
| [] −> acc
| x :: xs −> rev (x :: acc) xs

in
rev [] xs

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Some More Useful List Functions (cont’d)

;;
let rec until p f x = if p x then x else until p f (f x);;
let concat xs = fold append [] xs;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Counting Symbol Frequency

Collate

let rec collate = function
| [] −> []
| w :: ws as xs −>
let (ys, zs) = Lst.span (fun x −> x = w) xs in
(w, Lst.length ys) :: collate zs

;;

Example

collate [’a’; ’a’; ’b’; ’c’; ’c’; ’c’] = [(’a’, 2); (’b’, 1); (’c’, 3)]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Generating a Symbol-Frequency List

Sample

let sample xs =
sort (fun (c, v) (d, w) −>
compare (v, c) (w, d)) (collate (sort compare xs))

;;

Example

sample [’t’; ’e’; ’x’; ’t’] = [(’e’, 1); (’x’, 1); (’t’, 2)]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Huffman Trees
I leaf nodes contain character + weight (= frequency)
I other nodes store sum of weights of subtrees

Type

type node = int ∗ char option;;
type htree = node BinTree.t;;

Example

4

(t, 2) 2

(e, 1) (x , 1)

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Building the Huffman Tree

Step 1

I transform the symbol-frequency list into a list of Huffman trees

let mknode (c, w) = Node (Empty, (w, Some c), Empty);;

Example

Lst.map mknode [(’e’, 1); (’x’, 1); (’t’, 2)] = [(e, 1) ; (x , 1) ; (t, 2)]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Building the Huffman Tree (cont’d)

Step 2

I combine first two trees until only one left

let insert vt wts =
let (xts, yts) = Lst.span (fun x −> weight x <= weight vt) wts in
Lst.append xts (vt :: yts)

;;
let combine = function
| xt :: yt :: xts −>
let w = weight xt + weight yt in insert (Node (xt, (w, None), yt)) xts
| −> failwith ”Huffman.combine: length has to be greater than 1”

;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Building the Huffman Tree (cont’d)

Step 2 (cont’d)

I combine first two trees until only one left

let singleton xs = Lst.length xs = 1;;

let tree xs = Lst.hd (Lst.until singleton combine (Lst.map mknode xs));;

Example

tree [(’e’, 1); (’x’, 1); (’t’, 2)] =

4

(t, 2) 2

(e, 1) (x , 1)

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Generating a Code-Table

Encoding

I Which code corresponds to a given character?

let rec table = function
| Node (Empty, (, Some c), Empty) −> [(c, [])]
| Node (l, , r) −>
Lst.append
(Lst.map (fun (c, code) −> (c, 0 :: code)) (table l))
(Lst.map (fun (c, code) −> (c, 1 :: code)) (table r))

| −> failwith ”Huffman.table: the Huffman tree is empty”
;;
let rec lookup xbs v = match xbs with
| ((x, bs) :: xbs) −> if x = v then bs else lookup xbs v
| −> failwith ”Huffman.lookup: not found”

;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Generating a Code-Table (cont’d)

Encoding

I Which code corresponds to a given character?

Example

table

4

(t, 2) 2

(e, 1) (x , 1)

= [(’t’, [0]); (’e’, [1; 0]); (’x’, [1; 1])]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Encoding

I use code-table for compression

let encode t text = Lst.concat (Lst.map (lookup t) text);;

Example

encode [(’t’, [0]); (’e’, [1; 0]); (’x’, [1; 1])] [’t’; ’e’; ’x’; t] = [0; 1; 0; 1; 1; 0]

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

Week 4 - Trees Huffman Coding

Decoding

I use Huffman tree for decompression

let rec decode char = function
| (Node (Empty, (, Some c), Empty), cs) −> (c, cs)
| (Node (xt, ,), 0 :: cs) −> decode char (xt, cs)
| (Node (, , xt), 1 :: cs) −> decode char (xt, cs)
| −> failwith ”Huffman.decode: empty tree”

;;
let rec decode t = function
| [] −> []
| xs −> let (c, xs) = decode char (t, xs) in c :: decode t xs

;;

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb

	Week 4 - Trees
	Summary of Week 3
	Rooted Trees
	Binary Trees
	Huffman Coding

