Functional Programming WS 2007/08
 Christian Sternagel ${ }^{1}$ (VO + PS) Friedrich Neurauter ${ }^{2}$ (PS)
 Harald Zankl ${ }^{3}$ (PS)
 Computational Logic
 Institute of Computer Science
 University of Innsbruck

9 November 2007

[^0]
Week 4 - Trees

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

Exercises

The first test has been moved to November 30

L-Strings

- strings not functional in OCaml
- therefore use module Strng

Strings as character lists
type $t=$ char list
val center : int $->\mathrm{t}->\mathrm{t}$
val join : 'a list $->$ 'a list list $->$ 'a list
val left_justify : int \rightarrow t \rightarrow t
val of_int : int $->$ t
val of_string : string $->t$
val print : $\mathrm{t}->$ unit
val right_justify : int $->\mathrm{t}->\mathrm{t}$
val to_string : $\mathrm{t}->$ string
val toplevel_printer : $\mathrm{t}->$ unit

Setting Up the Interpreter

home directory
current directory

- .ocamlinit (searched in $\overbrace{\text {. }}$ and $\overbrace{\sim}$)
- write modules for custom interpreter to file.mltop
- compile with 'ocamlbuild file.top'
- start with './file.top'

Example

Lst
Picture
Strng

w03.mltop

Overview

Week 4 - Trees

Summary of Week 3

Rooted Trees
Binary Trees
Huffman Coding

What Are Trees?

Definition (Tree)
(rooted) tree $T=(N, E)$

- set of nodes N
- set of edges $E \subseteq N \times N$
- unique root of T $(\operatorname{root}(T) \in N)$ without predecessor
- all other nodes have exactly one predecessor

Example

- $N=\{a, b, c, d, e, f, g\}$
- $E=$ $\{(a, b),(a, c),(a, e),(c, d),(e, f),(e, g)\}$
- $\operatorname{root}(T)=a$
- $T=$

Trees in OCaml

Type
empty tree
type 'a tree $=\overbrace{\text { Empty }} \mid \underbrace{\text { Node }}$ of 'a $*$ 'a tree list;; node with content

Example

Empty
Node (1, [Node (2, [])])

1
Node (1, []) $\operatorname{Node~(1,~[Node~(2,~[]);~Node~(3,~[])])~}$

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

Restricting the Branching-Factor

Definition (Binary tree)
restrict number of successors (maximal 2)
Type
type 'a btree $=$ Empty | Node of 'a btree $*$ 'a * 'a btree;;

Functions on BinTrees

Definition (Size)	let rec size $=$ function
size of a tree equals	\mid Empty $->0$
number of nodes	\mid Node $(I, \ldots, r)->$ size $\mid+$ size $r+1$

Definition (Height) let rec height $=$ function height of a tree equals length of longest path | Empty $->0$ | Node (I, , r) $->\max$ (height I) (height r) +1 from root to some ;; leaf plus 1

Example

- size $T=5$
- height $T=3$

Creating Trees of Lists

The easy way
let rec of_list = function
| [] -> Empty
| $\mathrm{x}::$ xs $->$ Node (Empty, x , of_list xs)
;;
Example

Creating Trees of Lists (cont'd)

The fair way

$$
\text { let rec make }=\text { function }
$$

| [] -> Empty
xs ->
let $m=$ Lst.length $x s / 2$ in
let $(y s, z s)=$ Lst.split_at $m \times s$ in
Node (make ys, Lst.hd zs, make (Lst.tl zs))
;;

Example

Creating Trees of Lists (cont'd)

Ordered insertion
let rec insert $\mathrm{c} v=$ function
| Empty -> Node (Empty, v, Empty)
Node (I, w, r) ->
if $\mathrm{c} v \mathrm{w}<=0$ then Node (insert c $\mathrm{v}, \mathrm{w}, \mathrm{r}$) else Node (I, w, insert c v r) $;$

Example
insert compare 2

Creating Trees of Lists (cont'd)

Search trees
let search_tree c xs $=$ Lst.fold_left (fun $\times \mathrm{y} \rightarrow$ insert c y x) Empty xs;;
Example
search_tree compare $[3 ; 1 ; 0 ; 4 ; 2] \rightarrow^{+}$

Transforming Trees Into Lists

Flatten

let rec flatten $=$ function
| Empty -> []
Node (l, x, r) \rightarrow (flatten I) @ (x :: flatten r)
;;

Example

A Sorting Algorithm for Lists

let sort c xs $=$ BinTree.flatten (BinTree.search_tree c xs);;

Overview

Week 4 - Trees
Summary of Week 3
Rooted Trees
Binary Trees
Huffman Coding

The Idea

Reduce storage size

- ASCII uses 1 byte per character
- encode frequent characters 'short'

Example

Text: 'text'

- 32 bits in ASCII (01110100011001010111100001110100)
- using | t |
| :--- |
| e |
| $\mathrm{e} \mapsto 0$ |
| x | 610 (010110)

Some More Useful List Functions

```
    x :: xs as ys -> if p x then drop_while p xs else ys
;;
let span p xs = (take_while p xs, drop_while p xs);;
let rev xs =
    let rec rev acc = function
        [] -> acc
        x :: xs -> rev (x :: acc) xs
    in
    rev [] xs
```


Some More Useful List Functions (cont'd)

;
let rec until $p \mathrm{f} x=$ if $p \times$ then \times else until $p \mathrm{f}(\mathrm{f} \times)$;;
let concat $x s=$ fold append [] xs;;

Counting Symbol Frequency

Collate
let rec collate $=$ function
| [] -> []
| w :: ws as xs ->
let (ys, zs) $=$ Lst.span (fun $x->x=w$) xs in
(w, Lst.length ys) :: collate zs
;

Example

collate ['a'; 'a'; 'b'; 'c'; 'c'; 'c'] = [('a', 2); ('b', 1); ('c', 3)]

Generating a Symbol-Frequency List

Sample
let sample $\mathrm{xs}=$
sort (fun (c, v) (d, w) ->
compare (v, c) (w, d)) (collate (sort compare xs))
;;

Example
sample ['t'; 'e'; 'x'; 't'] = [('e', 1); ('x', 1); ('t', 2)]

Huffman Trees

- leaf nodes contain character + weight (= frequency)
- other nodes store sum of weights of subtrees

Type
type node $=$ int $*$ char option;;
type htree $=$ node BinTree.t;
Example

Building the Huffman Tree

Step 1

- transform the symbol-frequency list into a list of Huffman trees let mknode (c, w) = Node (Empty, (w, Some c), Empty);;

Example

Lst.map mknode $\left[\left({ }^{\prime} \mathrm{e}^{\prime}, 1\right) ;\left({ }^{\prime} \times\right.\right.$ ', 1); ('t', 2)] $=[(e, 1) ;(x, 1) ;(t, 2)]$

Building the Huffman Tree (cont'd)

Step 2

- combine first two trees until only one left

```
let insert vt wts =
    let (xts, yts)= Lst.span (fun x -> weight }x<==\mathrm{ weight vt) wts in
    Lst.append xts (vt :: yts)
;;
let combine = function
    |xt :: yt :: xts ->
        let w = weight xt + weight yt in insert (Node (xt, (w, None), yt)) xts
    | _ -> failwith "Huffman.combine: length has to be greater than 1"
;;
```


Building the Huffman Tree (cont'd)

Step 2 (cont'd)

- combine first two trees until only one left
let singleton $\mathrm{xs}=$ Lst.length $\mathrm{xs}=1$; ;
let tree $\mathrm{xs}=$ Lst.hd (Lst.until singleton combine (Lst.map mknode $\times s$));;
Example

$$
\text { tree }\left[(' \mathrm{e} ', 1) ;\left(\text { ' } \mathrm{x}^{\prime}, 1\right) ;\left({ }^{\prime} \mathrm{t} \text { ', 2)] }=(t, 2)\right.\right.
$$

Generating a Code-Table

Encoding

- Which code corresponds to a given character?
let rec table $=$ function
Node (Empty, (_, Some c), Empty) $->$ [(c, [])]
Node (I, _, r) ->
Lst.append
(Lst.map (fun (c, code) $->(c, 0$:: code)) (table I))
(Lst.map (fun (c, code) $->$ (c, 1 :: code)) (table r))
| $\quad->$ failwith "Huffman.table: the Huffman tree is empty"
;;
let rec lookup $x b s v=$ match $\times b s$ with
| ((x, bs) :: xbs) -> if $x=v$ then bs else lookup xbs v
| _ $->$ failwith "Huffman.lookup: not found"
;;

Generating a Code-Table (cont'd)

Encoding

- Which code corresponds to a given character?

Example

Encoding

- use code-table for compression
let encode t text $=$ Lst.concat (Lst.map (lookup t$)$ text); ;
Example
encode [('t', [0]); ('e', [1; 0]); ('x', [1; 1])] ['t'; 'e'; 'x'; t] = $0 ; 1 ; 0 ; 1 ; 1 ; 0]$

Decoding

- use Huffman tree for decompression
let rec decode_char $=$ function
| (Node (Empty, ($_$, Some c), Empty), cs) $->$(c, cs)
(Node (xt, _, _), $0:: \mathrm{cs}$) $->$ decode_char (xt, cs)
(Node (${ }_{\text {, , _, }}$ xt), 1 :: cs) $->$ decode_char (xt, cs)
| _ $->$ failwith "Huffman decode: empty tree"
;;
let rec decode $t=$ function

```
        | [] \(->\) []
        xs \(->\) let \((c, x s)=\) decode_char \((t, x s)\) in \(c::\) decode \(t \times s\)
```


[^0]: ${ }^{1}$ christian.sternagel@uibk.ac.at
 ${ }^{2}$ friedrich.neurauter@uibk.ac.at
 ${ }^{3}$ harald.zankl@uibk.ac.at

