

Functional Programming WS 2007/08

Christian Sternagel 1 (VO + PS) Friedrich Neurauter 2 (PS) Harald Zankl 3 (PS)

> Computational Logic Institute of Computer Science University of Innsbruck

30 November 2007

¹christian.sternagel@uibk.ac.at

²friedrich.neurauter@uibk.ac.at

³harald.zankl@uibk.ac.at

Overview

Week 7 - Induction

Summary of Week 6 Mathematical Induction Induction Over Lists Structural Induction

Overview

Week 7 - Induction Summary of Week 6 Mathematical Induction Induction Over Lists

Rewrite Strategies

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Innermost

- choose the (leftmost) innermost redex
- redex is innermost if no proper subterm is redex

Reduction Strategies

Call-by-name

- use outermost strategy
- stop as soon as WHNF is reached

Intuitively

Thou shalt not reduce below lambda.

Call-by-value

- use innermost strategy
- stop as soon as WHNF is reached

Evaluation Strategies

Lazy

- ▶ call-by-name + sharing
- only evaluate if necessary
- ▶ e.g. Haskell

Strict/Eager

- call-by-value
- evaluate arguments before calling a function
- e.g. OCaml (also support for lazyness)

Veek 7 - Induction Mathematical Induction

Overview

Week 7 - Induction

Summary of Week 6

Mathematical Induction

Induction Over Lists

Structural Induction

Veek 7 - Induction Mathematical Induction

When?

Goal

"prove that some property P holds for all natural numbers"

Formally

$$\forall n. P(n)$$
 (where $n \in \mathbb{N}$)

How?

To show

- ► *P*(0)
- $ightharpoonup \forall k.(P(k) \rightarrow P(k+1))$

Veek 7 - Induction Mathematical Induction

Why Does This Work?

We have

- \triangleright P(0) "property P holds for 0"
- ▶ $\forall k.(P(k) \rightarrow P(k+1))$ "if property P holds for arbitrary k then it also holds for k+1"

We want

 $\forall n.P(n)$ "P holds for arbitrary n"

We get

- ▶ for the moment fix *n*
- ▶ have *P*(0)
- ▶ have $P(0) \rightarrow P(1)$
- ▶ have *P*(1)
- ▶ have $P(1) \rightarrow P(2)$

- •
- ▶ have P(n-1)
- ▶ have $P(n-1) \rightarrow P(n)$
- \blacktriangleright hence P(n)

eek 7 - Induction Mathematical Induction

What is Ment by 'Property'?

- anything that depends on some variable and is either true or false
- ▶ can be seen as function p : int -> bool

Example

•
$$P(x) = (1 + 2 + \cdots + x = \frac{x \cdot (x+1)}{2})$$

▶ base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

▶ step case:
$$P(k) \to P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

$$1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$$

$$\stackrel{\text{IH}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$$

$$= \frac{(k+1) \cdot (k+2)}{2}$$

Veek 7 - Induction Mathematical Induction

Remark

- of course the base case can be changed
- e.g., if base case P(1), property holds for all $n \ge 1$

Veek 7 - Induction Induction Over Lists

Overview

Week 7 - Induction

Summary of Week 6
Mathematical Induction

Induction Over Lists

Structural Induction

Veek 7 - Induction Induction Over Lists

Recall

```
Type type 'a list = Nil | Cons of 'a * 'a list
```

Note

- ▶ lists are recursive structures
- base case: []
- ▶ step case: *x* :: *xs*

Veek 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

- ▶ to show P(xs) for all lists xs
- ightharpoonup show base case: P([])
- ▶ show step case: $P(xs) \rightarrow P(x :: xs)$ for arbitrary x and xs

Formally

$$(P([]) \land \forall x : \alpha. \forall xs : \alpha \text{ list.}(\underbrace{P(xs)}_{\mathsf{IH}} \to P(x :: xs))) \to \forall \mathit{Is} : \alpha \text{ list.} P(\mathit{Is})$$

Remarks

- \triangleright y : β reads 'y is of type β '
- \triangleright for lists, P can be seen as function p : 'a list -> bool

7 - Induction Over Lists

Example - Lst.length

Recall

```
\begin{array}{l} \textbf{let rec} \ \mathsf{length} = \textbf{function} \\ \mid [] \ -> 0 \\ \mid \mathsf{x} :: \mathsf{xs} \ -> 1 \ + \ \mathsf{length} \ \mathsf{xs} \\ \dots \end{array}
```

Lemma

adding element to list increases length by one, i.e.,

$$length (x :: xs) = length xs + 1$$

for arbitrary x

Proof.

Blackboard

_

7 - Induction Over Lists

Example - Lst.append

Recall

Lemma

[] is right identity of @, i.e.,

$$xs @ [] = xs$$

Proof.

Blackboard

Week 7 - Induction Structural Induction

Overview

Week 7 - Induction

Summary of Week 6 Mathematical Induction Induction Over Lists

Structural Induction

Veek 7 - Induction Structural Induction

General Structures

Type

type arith = Var of char | Const of int | Add of arith * arith

Induction Principle

- for every non-recursive constructor there is a base case
 - base case: Var x
 - base case: Const i
- ▶ for every recursive constructor there is a step case
 - ightharpoonup step case: Add (s, t)

Veek 7 - Induction Structural Induction

Induction Principle on General Structures

Intuition

- \triangleright to show P(s) for all structures s
- show base cases
- ▶ show step cases

Veek 7 - Induction Structural Induction

Recall

```
Type
type 'a btree = Empty | Node of 'a btree * 'a * 'a btree
Induction Principle
```

$$(P(\mathsf{Empty}) \land \\ \forall v : \alpha. \forall I : \alpha \; \mathsf{btree.} \forall r : \alpha \; \mathsf{btree.}$$
 $((P(I) \land P(r)) \rightarrow P(\mathsf{Node}(I, v, r)))) \rightarrow \\ \forall t : \alpha \; \mathsf{btree.} P(t)$

ek 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

Lemma

perfect binary tree t of height n has exactly $2^n - 1$ nodes

Proof.

To show:
$$P(t) = ((\mathsf{perfect}(t) \land \mathsf{height}(t) = n) \rightarrow (\mathsf{size}(t) = 2^n - 1))$$

Blackboard