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Week 7 - Induction Summary of Week 6

Rewrite Strategies

Outermost

I choose the (leftmost) outermost
redex

I redex is outermost if not
subterm of different redex

Innermost

I choose the (leftmost) innermost
redex

I redex is innermost if no proper
subterm is redex
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Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name

I use outermost strategy

I stop as soon as WHNF is
reached

Call-by-value

I use innermost strategy

I stop as soon as WHNF is
reached

Intuitively

Thou shalt not reduce below lambda.
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Evaluation Strategies

Lazy

I call-by-name + sharing

I only evaluate if necessary

I e.g. Haskell

Strict/Eager

I call-by-value

I evaluate arguments before
calling a function

I e.g. OCaml (also support for
lazyness)
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Week 7 - Induction Mathematical Induction

When?

Goal
“prove that some property P holds for all natural numbers”

Formally

∀n.P(n) (where n ∈ N)

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 7 - Induction Mathematical Induction

How?

To show

I P(0)

I ∀k.(P(k) → P(k + 1))
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Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

I P(0) “property P holds for 0”

I ∀k.(P(k) → P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want
∀n.P(n) “P holds for arbitrary n”

We get

I for the moment fix n

I have P(0)

I have P(0) → P(1)

I have P(1)

I have P(1) → P(2)

I . . .

I have P(n − 1)

I have P(n − 1) → P(n)

I hence P(n)
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Week 7 - Induction Mathematical Induction

What is Ment by ‘Property’?

I anything that depends on some variable and is either true or false

I can be seen as function p : int −> bool

Example

I P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

I base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

I step case: P(k) → P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2
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Week 7 - Induction Mathematical Induction

Remark

I of course the base case can be changed

I e.g., if base case P(1), property holds for all n ≥ 1
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Week 7 - Induction Induction Over Lists

Recall

Type

type ’a list = Nil︸︷︷︸
[]

| Cons of ’a ∗ ’a list︸ ︷︷ ︸
::

Note

I lists are recursive structures

I base case: []

I step case: x :: xs
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Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

I to show P(xs) for all lists xs

I show base case: P([])

I show step case: P(xs) → P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x : α.∀xs : α list.(P(xs)︸ ︷︷ ︸
IH

→ P(x :: xs))) → ∀ls : α list.P(ls)

Remarks

I y : β reads ‘y is of type β’

I for lists, P can be seen as function p : ’a list −> bool
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Example - Lst.length

Recall

let rec length = function
| [] −> 0
| x :: xs −> 1 + length xs

;;

Lemma
adding element to list increases length by one, i.e.,

length (x :: xs) = length xs + 1

for arbitrary x

Proof.
Blackboard
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Week 7 - Induction Induction Over Lists

Example - Lst.append

Recall

let rec (@) xs ys = match xs with
| [] −> ys
| x :: xs −> x :: (xs @ ys)

;;

Lemma
[] is right identity of @, i.e.,

xs @ [] = xs

Proof.
Blackboard
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Week 7 - Induction Structural Induction

General Structures

Type

type arith = Var of char | Const of int | Add of arith ∗ arith

Induction Principle

I for every non-recursive constructor there is a base case
I base case: Var x
I base case: Const i

I for every recursive constructor there is a step case
I step case: Add (s, t)
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Week 7 - Induction Structural Induction

Induction Principle on General Structures

Intuition

I to show P(s) for all structures s

I show base cases

I show step cases
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Week 7 - Induction Structural Induction

Recall

Type

type ’a btree = Empty | Node of ’a btree ∗ ’a ∗ ’a btree

Induction Principle

(P(Empty)∧
∀v : α.∀l : α btree.∀r : α btree.

((P(l) ∧ P(r)) → P(Node(l , v , r))))

→
∀t : α btree.P(t)
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Week 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

Lemma
perfect binary tree t of height n has exactly 2n − 1 nodes

Proof.
To show: P(t) = ((perfect(t) ∧ height(t) = n) → (size(t) = 2n − 1))
Blackboard
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