

Functional Programming WS 2007/08

Christian Sternagel¹ (VO + PS) Friedrich Neurauter² (PS) Harald Zankl³ (PS)

> Computational Logic Institute of Computer Science University of Innsbruck

30 November 2007

¹christian.sternagel@uibk.ac.at
²friedrich.neurauter@uibk.ac.at
³harald.zankl@uibk.ac.at
CS (ICS@UIBK) FP OCaml

Week 7 - Induction

Overview

Week 7 - Induction

Summary of Week 6 Mathematical Induction Induction Over Lists Structural Induction

Bash

 Bash

Overview

Week 7 - Induction Summary of Week 6 Mathematical Induction

Induction Over Lists Structural Induction

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Innermost

- choose the (leftmost) innermost redex
- redex is innermost if no proper subterm is redex

Reduction Strategies

Call-by-name

- use outermost strategy
- stop as soon as WHNF is reached

Intuitively

Thou shalt not reduce below lambda.

Call-by-value

- use innermost strategy
- stop as soon as WHNF is reached

Lazy

- call-by-name + sharing
- only evaluate if necessary
- ▶ e.g. Haskell

Strict/Eager

- call-by-value
- evaluate arguments before calling a function
- e.g. OCaml (also support for lazyness)

Overview

Week 7 - Induction Summary of Week 6 Mathematical Induction Induction Over Lists Structural Induction

Goal

"prove that some property P holds for all natural numbers"

Formally

 $\forall n. P(n)$ (where $n \in \mathbb{N}$)

How?

To show

- ► P(0)
- ▶ $\forall k.(P(k) \rightarrow P(k+1))$

Why Does This Work?

We have

- \triangleright P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for arbitrary n"

We get

- ▶ for the moment fix *n*
- ▶ have *P*(0)
- ▶ have $P(0) \rightarrow P(1)$
- have P(1)

▶ have
$$P(1) \rightarrow P(2)$$

...
have P(n-1)have $P(n-1) \rightarrow P(n)$ hence P(n)

Bash

What is Ment by 'Property'?

- anything that depends on some variable and is either true or false
- ▶ can be seen as function p : int -> bool

Example

►
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

► base case: $P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$
► step case: $P(k) \to P(k+1)$
IH: $P(k) = (1 + 2 + \dots + k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$
 $1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$
 $\stackrel{\text{IH}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 $= \frac{(k+1) \cdot (k+2)}{2}$
CS (ICS@UBK) FP OCam Bash

Week 7 - Induction

Remark

- of course the base case can be changed
- e.g., if base case P(1), property holds for all $n \ge 1$

Overview

Week 7 - Induction Summary of Week 6 Mathematical Induction Induction Over Lists Structural Induction

Induction Principle on Lists

Intuition

- to show P(xs) for all lists xs
- ▶ show base case: *P*([])
- show step case: $P(xs) \rightarrow P(x :: xs)$ for arbitrary x and xs

Formally $(P([]) \land \forall x : \alpha . \forall xs : \alpha \text{ list.}(\underbrace{P(xs)}_{\mathsf{IH}} \to P(x :: xs))) \to \forall ls : \alpha \text{ list.}P(ls)$

Remarks

- $y : \beta$ reads 'y is of type β '
- for lists, P can be seen as function p : 'a list -> bool

CS (ICS@UIBK)	FP	OCaml Bash
Week 7 - Induction		Induction Over Lists
Example - Lst.length		
Recall		
let rec length = function		
[] -> 0		
\mid x :: xs $->$ 1 + length xs		
· · · · · · · · · · · · · · · · · · ·		
Lemma		
adding element to list increase	es length by one, i.e	e.,
length (v…ve) — length ve	⊥ 1

length (x :: xs) = length xs + 1

FP

for arbitrary x

Proof. Blackboard

Bash

Example - Lst.append

Recall

let rec (@) xs ys = match xs with |[] -> ys | x :: xs -> x :: (xs @ ys);;

Lemma
[] *is right identity of* @, *i.e.*,

xs @ [] = *xs*

Overview

Week 7 - Induction

Summary of Week 6 Mathematical Induction Induction Over Lists Structural Induction

General Structures

Type

type arith = Var of char | Const of int | Add of arith * arith

Induction Principle

- for every non-recursive constructor there is a base case
 - base case: Var x
 - base case: Const i
- for every recursive constructor there is a step case
 - ► step case: Add (*s*, *t*)

CS (ICS@UIBK)	FP	OCaml Bash
Week 7 - Induction		Structural Induction

Induction Principle on General Structures

Intuition

- to show P(s) for all structures s
- show base cases
- show step cases

Recall

Type type 'a btree = Empty | Node of 'a btree * 'a * 'a btree

Induction Principle

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

Lemma

perfect binary tree t of height n has exactly $2^n - 1$ nodes

Proof.

To show: $P(t) = ((perfect(t) \land height(t) = n) \rightarrow (size(t) = 2^n - 1))$ Blackboard

Bash