
Functional Programming
WS 2007/08

Christian Sternagel1 (VO + PS)
Friedrich Neurauter2 (PS)

Harald Zankl3 (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

7 December 2007
1christian.sternagel@uibk.ac.at
2friedrich.neurauter@uibk.ac.at
3harald.zankl@uibk.ac.at

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency

Overview

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

CS (ICS@UIBK) FP OCaml Bash

http://cl-informatik.uibk.ac.at
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Summary of Week 7

Overview

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Summary of Week 7

Mathematical Induction

Induction Principle

(P(m)︸ ︷︷ ︸
base case

∧ ∀k ≥ m.(P(k) → P(k + 1))︸ ︷︷ ︸
step case

) → ∀n ≥ m.P(n)

Example

I first domino will fall

I if a domino falls also its right neighbor falls

· · ·

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Summary of Week 7

Induction on Lists

Induction Principle

(P([])︸ ︷︷ ︸
base case

∧ ∀x : α.∀xs : α list.(P(xs) → P(x :: xs))︸ ︷︷ ︸
step case

) → ∀ls : α list.P(ls)

Lemma
@ is associative, i.e.,

xs @(ys @ zs) = (xs @ ys) @ zs

Proof.
Blackboard

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Summary of Week 7

Structural Induction

Usage

I can be used on every variant type

I base cases correspond to non-recursive constructors

I step cases correspond to recursive constructors

Example

I lists

I trees

I λ-terms

I . . .

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Fibonacci Numbers

Overview

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Fibonacci Numbers

Mathematical

Definition (n-th Fibonacci number)

fib n
def
=

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise

Example

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181 ,6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309,
3524578, 5702887, 9227465, 14930352,
24157817, 39088169, 63245986, 102334155,
165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073,
4807526976, 7778742049, 12586269025, . . .

n

fib n 2n

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Fibonacci Numbers

OCaml

Definition
let rec fib n = if n < 2 then 1 else fib (n − 1) + fib (n − 2);;

Example
fib 5

fib 4

fib 3

fib 2

fib 1 fib 0

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tupling

Overview

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tupling

Combining Several Results

Idea

I use tuples to return more than one result

I make results available as return values instead of recomputing them

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tupling

Fibonacci Numbers

Example

let rec fibpair n =
if n < 1 then (0, 1) else if n = 1 then (1, 1)

else let (f1, f2) = fibpair (n − 1) in (f2, f1 + f2)
;;

I this function is linear

Lemma
fibpair n = (fib (n − 1), fib n)

Proof.
Blackboard

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tupling

A Second Example

Goal
compute average value of an integer list

Approach 1

I let average xs = IntLst.sum xs / Lst.length xs;;

I 2 traversals of xs are done

Combined Function

I

let rec sumlen = function
| [] −> (0, 0)
| x :: xs −> let (s, l) = sumlen xs in (x + s, l + 1)

;;

I one traversal of xs suffices

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tail Recursion

Overview

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tail Recursion

Recursion vs. Tail Recursion

Idea

I a function calling itself is recursive

I functions that mutually call each other are mutually recursive

I special kind of recursion is tail recursion

Definition (Tail recursion)

a function is called tail recursive if the last action in the function body is
the recursive call

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tail Recursion

Examples

Length

I

let rec length = function
| [] −> 0
| x :: xs −> 1 + length xs

;;

I not tail recursive

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tail Recursion

Examples (cont’d)

Even/Odd

I

let rec is even = function
| 0 −> true
| 1 −> false
| n −> is odd (n − 1)

and is odd = function
| 0 −> false
| 1 −> true
| n −> is even (n − 1)

;;

I mutually recursive (btw: also tail recursive)

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tail Recursion

Examples (cont’d)

Reverse

I

let rev xs =
let rec rev acc = function
| [] −> acc
| x :: xs −> rev (x :: acc) xs

in rev [] xs
;;

I tail recursive

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tail Recursion

Parameter Accumulation

Idea

I make function tail recursive

I provide data as input instead of computing it before recursive call

I Why? (tail recursive functions can automatically be transformed into
space-efficient loops)

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tail Recursion

Example

Average

I

let sumlen xs =
let rec sumlen sum len = function
| [] −> (sum, len)
| x :: xs −> sumlen (x + sum) (len + 1) xs

in sumlen 0 0 xs
;;

I tail recursive

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

	Week 8 - Efficiency
	Summary of Week 7
	Fibonacci Numbers
	Tupling
	Tail Recursion


