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Mathematical Induction

Induction Principle

(P(m)︸ ︷︷ ︸
base case

∧ ∀k ≥ m.(P(k) → P(k + 1))︸ ︷︷ ︸
step case

) → ∀n ≥ m.P(n)

Example

I first domino will fall

I if a domino falls also its right neighbor falls

· · ·
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Induction on Lists

Induction Principle

(P([])︸ ︷︷ ︸
base case

∧ ∀x : α.∀xs : α list.(P(xs) → P(x :: xs))︸ ︷︷ ︸
step case

) → ∀ls : α list.P(ls)

Lemma
@ is associative, i.e.,

xs @(ys @ zs) = (xs @ ys) @ zs

Proof.
Blackboard
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Structural Induction

Usage

I can be used on every variant type

I base cases correspond to non-recursive constructors

I step cases correspond to recursive constructors

Example

I lists

I trees

I λ-terms

I . . .
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Mathematical

Definition (n-th Fibonacci number)

fib n
def
=

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise

Example

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, 610, 987, 1597, 2584, 4181 ,6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309,
3524578, 5702887, 9227465, 14930352,
24157817, 39088169, 63245986, 102334155,
165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073,
4807526976, 7778742049, 12586269025, . . .

n

fib n 2n
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OCaml

Definition
let rec fib n = if n < 2 then 1 else fib (n − 1) + fib (n − 2);;

Example
fib 5

fib 4

fib 3

fib 2

fib 1 fib 0

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1
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Combining Several Results

Idea

I use tuples to return more than one result

I make results available as return values instead of recomputing them
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Fibonacci Numbers

Example

let rec fibpair n =
if n < 1 then (0, 1) else if n = 1 then (1, 1)

else let (f1, f2) = fibpair (n − 1) in (f2, f1 + f2)
;;

I this function is linear

Lemma
fibpair n = (fib (n − 1), fib n)

Proof.
Blackboard
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A Second Example

Goal
compute average value of an integer list

Approach 1

I let average xs = IntLst.sum xs / Lst.length xs;;

I 2 traversals of xs are done

Combined Function

I

let rec sumlen = function
| [] −> (0, 0)
| x :: xs −> let (s, l) = sumlen xs in (x + s, l + 1)

;;

I one traversal of xs suffices
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Recursion vs. Tail Recursion

Idea

I a function calling itself is recursive

I functions that mutually call each other are mutually recursive

I special kind of recursion is tail recursion

Definition (Tail recursion)

a function is called tail recursive if the last action in the function body is
the recursive call
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Examples

Length

I

let rec length = function
| [] −> 0
| x :: xs −> 1 + length xs

;;

I not tail recursive

CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb


Week 8 - Efficiency Tail Recursion

Examples (cont’d)

Even/Odd

I

let rec is even = function
| 0 −> true
| 1 −> false
| n −> is odd (n − 1)

and is odd = function
| 0 −> false
| 1 −> true
| n −> is even (n − 1)

;;

I mutually recursive (btw: also tail recursive)
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Examples (cont’d)

Reverse

I

let rev xs =
let rec rev acc = function
| [] −> acc
| x :: xs −> rev (x :: acc) xs

in rev [] xs
;;

I tail recursive
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Parameter Accumulation

Idea

I make function tail recursive

I provide data as input instead of computing it before recursive call

I Why? (tail recursive functions can automatically be transformed into
space-efficient loops)
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Example

Average

I

let sumlen xs =
let rec sumlen sum len = function
| [] −> (sum, len)
| x :: xs −> sumlen (x + sum) (len + 1) xs

in sumlen 0 0 xs
;;

I tail recursive
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