Week 8 - Efficiency
mputational :

Functional Programming
WS 2007/08

Week 8 - Efficiency
Summary of Week 7
Fibonacci Numbers
Tupling
Tail Recursion

Christian Sternagel' (VO + PS)
Friedrich Neurauter® (PS)
Harald ZankI3 (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

7 December 2007

'christian. sternagel@uibk.ac.at
?friedrich.neurauter@uibk.ac.at
*harald.zankl@uibk.ac.at
S (csous) P oCh e

Overview Mathematical Induction

Induction Principle
(P(m) AVk > m.(P(k) — P(k +1))) — Vn > m.P(n)
N AN

-~

base case step case

Week 8 - Efficiency
Summary of Week 7 Example

» first domino will fall

» if a domino falls also its right neighbor falls

CS (ICS@UIBK) FP OCaml Bash CS (ICS@UIBK) FP OCaml Bash

http://cl-informatik.uibk.ac.at
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

Induction on Lists Structural Induction

Induction Principle

(P([]) AVx : a.¥xs : a list.(P(xs) — P(x::xs))) — Vis : a list.P(Is) Usage
~—— N
base case step case » can be used on every variant type
Lemma » base cases correspond to non-recursive constructors
© is associative, i.e., > step cases correspond to recursive constructors
xsO(ys©zs) = (xsQys) @ zs Example
> lists
Proof. > trees
Blackboard O
> A\-terms
> ...
CS (ICS@UIBK) 3 OCaml Bash CS (ICS@UIBK) 3 OCaml Bash
Overview Mathematical

Definition (n-th Fibonacci number)

ﬁbng{l ifn<1

Week 8 - Efficiency fib(n — 1) + fib(n — 2) otherwise

Fibonacci Numbers Example
1,1,2 3,5 8,13, 21, 34, 55, 89, 144, 233, fibn 2"
377, 610, 987, 1597, 2584, 4181 ,6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, /
317811, 514229, 832040, 1346269, 2178300, /

3524578, 5702887, 9227465, 14930352,
24157817, 39088169, 63245986, 102334155,
165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073,
4807526976, 7778742049, 12586269025, ...

n
CS (ICSQUIBK) FP OCaml Bash CS (ICSQUIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

Week 8 - Efficiency Fibonacci Numbers
OCaml

Definition
let rec fib n = if n < 2 then 1 else fib (n — 1) + fib (n — 2);;
Example
fib 5
fib 4 fib 3

PN PN

fib 3 fib 2 fib 2 fib 1

/N /N /N

fib 2 fib 1 fib 1 fib 0 fib 1 fib 0

/\

fibl fib0

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tupling

Combining Several Results

Idea

» use tuples to return more than one result

> make results available as return values instead of recomputing them

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tupling

Overview

Week 8 - Efficiency

Tupling

CS (ICS@UIBK) FP OCaml Bash

Week 8 - Efficiency Tupling

Fibonacci Numbers

Example

let rec fibpair n =
if n < 1then (0, 1) else if n = 1 then (1, 1)
else let (f1, f2) = fibpair (n — 1) in (f2, f1 + f2)

» this function is linear

Lemma
fibpair n = (fib (n — 1), fib n)
Proof.
Blackboard O
CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

A Second Example Overview

Goal

compute average value of an integer list

Approach 1
Week 8 - Efficiency

» let average xs = IntLst.sum xs / Lst.length xs;;

» 2 traversals of xs are done
Combined Function Tail Recursion

>
let rec sumlen = function

| I => (0, 0)

| x i xs —> let (s, I) = sumlen xsiin (x +s, | + 1)

» one traversal of xs suffices

CS (ICS@UIBK) FP OCaml Bash CS (ICS@UIBK) FP OCaml Bash
Recursion vs. Tail Recursion Examples
|dea Length
» a function calling itself is recursive
» functions that mutually call each other are mutually recursive >
» special kind of recursion is tail recursion let rec length = function
|1 —>0
. . | x i xs —> 1 + length xs
Definition (Tail recursion) .
a function is called tail recursive if the last action in the function body is
the recursive call > not tail recursive
OCaml Bash

CS (ICS@UIBK) FP OCaml Bash CS (ICS@UIBK) FP

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

Examples (cont'd) Examples (cont’'d)
Even/Odd
Reverse
>
let rec is_even = function >
| 0 —> true let rev xs =
| 1 —> false let rec rev acc = function
| n —> is_odd (n — 1) ‘ [] —> acc
and is_odd = function | x i xs —> rev (x :: acc) xs
| 0 —> false in rev [] xs
| 1 —> true

| n —> is_even (n — 1)
> tail recursive

» mutually recursive (btw: also tail recursive)

CS (ICSQUIBK) FP OCaml Bash CS (ICSQUIBK) FP OCaml Bash
Parameter Accumulation Example
Average
Idea >
» make function tail recursive let sumlen xs =

let rec sumlen sum len = function

| [| => (sum, len)

| x i xs —> sumlen (x 4+ sum) (len + 1) xs
in sumlen 0 0 xs

» provide data as input instead of computing it before recursive call

» Why? (tail recursive functions can automatically be transformed into
space-efficient loops)

» tail recursive

CS (ICS@UIBK) FP OCaml Bash CS (ICS@UIBK) FP OCaml Bash

file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb
file:./interpreter.rb
file:./cmdline.rb

	Week 8 - Efficiency
	Summary of Week 7
	Fibonacci Numbers
	Tupling
	Tail Recursion

