Solutions

1.

$$
\begin{aligned}
\underline{(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x)))(\lambda y z . z)} & \rightarrow_{\beta} \overline{(\lambda x .(\lambda y z . z)(x x))(\lambda x .(\lambda y z . z)(x x))} \\
& \rightarrow_{\beta} \underline{(\lambda y z . z)((\lambda x .(\lambda y z . z)(x x))(\lambda x .(\lambda y z . z)(x x)))} \\
& \rightarrow_{\beta} \lambda z . z
\end{aligned}
$$

2. Proof. The property to prove is

$$
P(x s)=(\text { sum } x s=\text { fold }(+) 0 x s) .
$$

Base Case (xs = []). To show: $P([])$, i.e.,

$$
\operatorname{sum}[]=\text { fold }(+) 0[] .
$$

Starting from the lhs, following derivation concludes the base case:

$$
\begin{aligned}
\text { sum }[] & =0 & & \text { (definition of sum) } \\
& =\text { fold }(+) 0[] & & \text { (definition of fold) }
\end{aligned}
$$

Step Case $(\mathrm{xs}=y:: y s)$. To show: $P(y s) \rightarrow P(y:: y s)$. Therefor assume the IH $P(y s)$, i.e.,

$$
\text { sum } y s=\text { fold }(+) 0 \text { ys. }
$$

It remains to show that $P(y:: y s)$. This is done as follows:

$$
\begin{aligned}
\operatorname{sum}(y:: y s) & =y+\operatorname{sum} y s & & \text { (definition of sum) } \\
& =y+\text { fold }(+) 0 y s & & \text { (IH) } \\
& =\text { fold }(+) 0(y:: y s) & & \text { (definition of fold) }
\end{aligned}
$$

3. (a) No, sum is not tail recursive since the last function call in the recursive case of its definition is to $(+)$. Here is a tail recursive alternative:
```
let sum xs \(=\)
    let rec sum acc \(=\) function
        [] -> acc
        |x:: xs \(->\) sum ( \(\mathrm{x}+\mathrm{acc}\) ) xs
    in sum 0 xs
;;
```

(b) Yes, f is tail recursive since the last function call in the recursive case is to itself.

