Functional Programming	WS $2007/2008$	LVA 703018

Solutions

1.

$$\begin{array}{l} (\lambda uv.u) \; (\underline{(\lambda w.w) \; (\lambda xy.y)}) \; (\lambda z.z) \to_{\beta} \underline{(\lambda uv.u) \; (\lambda xy.y)} \; (\lambda z.z) \\ \to_{\beta} \underline{(\lambda vxy.y) \; (\lambda z.z)} \\ \to_{\beta} \overline{\lambda xy.y} \end{array}$$

2. *Proof.* The property to prove is

$$P(xs) = (\text{prod } xs = \text{fold } (\times) \ 1 \ xs)$$

Base Case (xs = []). To show: P([]), i.e.,

prod [] = fold
$$(\times)$$
 1 [].

Starting from the lhs, following derivation concludes the base case:

prod [] = 1 (definition of prod) = fold (×) 1 [] (definition of fold)

Step Case (xs = y :: ys). To show: $P(ys) \rightarrow P(y :: ys)$. Therefor assume the IH P(ys), i.e.,

prod $ys = fold (\times) 1 ys$.

It remains to show that P(y :: ys). This is done as follows:

$prod\ (y :: ys) = y \times prod\ ys$	(definition of prod)
$= y \times fold (\times) 1 \ ys$	(IH)
$= fold \ (\times) \ 1 \ (y :: ys)$	(definition of fold)

- 3. (a) Yes, e and o are tail recursive since the last function calls in their respective recursive cases are to each other.
 - (b) No, prod is not tail recursive since the last function call in the recursive case of its definition is to (*). Here is a tail recursive alternative:

```
let prod xs =
  let rec prod acc = function
  | [] -> acc
  | x :: xs -> prod (x * acc) xs
  in prod 1 xs
;;
```