Solutions

1.

$$
\begin{aligned}
(\lambda u v . u) \underline{((\lambda w . w)(\lambda x y . y))}(\lambda z . z) & \rightarrow_{\beta} \frac{(\lambda u v . u)(\lambda x y . y)}{(\lambda v x y \cdot y)(\lambda z . z)} \\
& \rightarrow_{\beta} \underline{(\lambda v . z)} \\
& \rightarrow_{\beta} \lambda x y . y
\end{aligned}
$$

2. Proof. The property to prove is

$$
P(x s)=(\operatorname{prod} x s=\text { fold }(\times) 1 x s)
$$

Base Case (xs $=[])$. To show: $P([])$, i.e.,

$$
\operatorname{prod}[]=\text { fold }(\times) 1[]
$$

Starting from the lhs, following derivation concludes the base case:

$$
\begin{aligned}
\operatorname{prod}[] & =1 & & \text { (definition of prod) } \\
& =\text { fold }(\times) 1[] & & \text { (definition of fold) }
\end{aligned}
$$

Step Case (xs $=y:: y s)$. To show: $P(y s) \rightarrow P(y:: y s)$. Therefor assume the IH $P(y s)$, i.e., $\operatorname{prod} y s=$ fold $(\times) 1 y s$.
It remains to show that $P(y:: y s)$. This is done as follows:

$$
\begin{align*}
\operatorname{prod}(y:: y s) & =y \times \operatorname{prod} y s & & \text { (definition of prod) } \\
& =y \times \text { fold }(\times) 1 y s & & \text { (IH) } \tag{IH}\\
& =\text { fold }(\times) 1(y:: y s) & & \text { (definition of fold) }
\end{align*}
$$

3. (a) Yes, e and o are tail recursive since the last function calls in their respective recursive cases are to each other.
(b) No, prod is not tail recursive since the last function call in the recursive case of its definition is to $(*)$. Here is a tail recursive alternative:
let prod $\mathrm{xs}=$
let rec prod acc $=$ function
| [] \rightarrow acc
| $\mathrm{x}::$ xs $->\operatorname{prod}(\mathrm{x} * \mathrm{acc}) \mathrm{xs}$
in prod $1 \times s$
;;
