

Introduction to Model Checking

René Thiemann

- Last Lecture
- Expressiveness of LTL

Last Lecture

Last Lecture

- Translation from LTL to NBAs (exponential)
- Theorem:
 - there are LTL formulas which require expontially sized NBAs
- Theorem:
 - LTL model checking is co-NP hard
- (reduction via Hamiltonian Path Problem)
- Theorem: LTL model checking is PSPACE complete

Expressiveness of LTL

Comparing LTL with NBAs

Recall Translation Theorem:

Theorem (Vardi, Wolper)

Every LTL formula φ can be translated into an NBA \mathcal{A}_{φ} such that

 $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{A}_{\varphi}).$

Expressiveness of LTL

Other Limits of LTL (and NBAs)

- Currently: Model Checking $TS \models \varphi$ iff $\mathcal{L}(TS) \subseteq \mathcal{L}(\varphi)$
- $\Rightarrow\,$ The following transition system satisfies every formula

Properties only speaking about allowed traces are limited

- Examples which cannot be expressed (contain existence)
 - a beverage will be delivered
 - at every time there is a way to reach the main menu

Linear and branching temporal logic

• *Linear* temporal logic:

RT (ICS @ UIBK)

"statements about all paths (starting in a state)"

week 10

- $s \models Ga$ iff for all possible paths starting in s always a
- *Branching* temporal logic:

"statements about all or some paths starting in a state"

Branching temporal logics

There are various branching temporal logics:

- Computation Tree Logic (CTL)
- Extended Computation Tree Logic (CTL*)
 - combines LTL and CTL into a single framework
- Alternation-free modal μ -calculus

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness

RT (ICS @ UIBK)

- there are properties that can be expressed in LTL, but not in CTL
- there are properties that can be expressed in CTL, but not in LTL
- Distinct model-checking algorithms, and their time complexities

week 10

15/24

```
Syntax and Semantics of CTL
```

Computation Tree Logic

modal logic over infinite trees [Clarke & Emerson 1981] • Formulas over states (capital greek letters) a ∈ AP atomic proposition • $\neg \Phi$ and $\Phi \land \Psi$ negation and conjunction • Ε*φ* there *exists* a path fulfilling φ • **Α**φ all paths fulfill φ • Formulas over paths (lower case greek letters) • ΧΦ the next state fulfills $\boldsymbol{\Phi}$ ΦUΨ Φ holds until a Ψ -state is reached \Rightarrow note that X and U *alternate* with A and E • AX X Φ and A EX $\Phi \notin$ CTL, but AX AX Φ and AX EX $\Phi \in$ CTL • Convention: Unary operators bind stronger than binary ones $(e.g., \neg a \cup b \equiv (\neg a) \cup b)$ RT (ICS @ UIBK) week 10 **Derived** operators

Visualization of semantics \bigcirc ж //\ 1 1 1 E F red RT (ICS @ UIBK) week 10 19/24 Example properties in CTL

Syntax and Semantics of CTL

Semantics of CTL state-formulas

Syntax and Semantics of CTL

Transition System Semantics

• For CTL-state-formula Φ , the *satisfaction set* $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

- every state has at least one outgoing edge) and a CTL-formula Φ such that $Traces(TS_1) = Traces(TS_2)$ and $TS_1 \models \Phi$, but $TS_2 \not\models \Phi$.
- Consider the following transition system which models a traffic light which can blink.

