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Last Exercises

®=A(aUb)VEX(AGH)

3 2/ !
b a, b a
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Last Exercises

Provide a direct fixpoint characterization of Sat(E G ®) without using the
following equivalence.

EGd=-AF-® = -AtrueU -®
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Expressiveness of CTL and LTL

CTL
AGEFa

AF (b A AXb)
AFAGc

Theorem (Clarke, Draghicescu)

Let ® be a CTL-state-formula and ¢ the LTL-formula that is obtained by
eliminating all path quantifiers in ®. Then:

® = ¢ or there does not exist any LTL-formula that is equivalent to ®.

Hence, to prove that AF A Gc is not LTL-expressible it suffices to show
that AFAGa and F G ¢ are not equivalent.
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Expressiveness of CTL and LTL

CTL*
AGEFa Vv F(b A XDb)
path quantifiers and path tracing

LTL
F(b A XDb)
path tracing

CTL
AGEFa
path quantifiers
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CTL*

e Formulas over states (capital greek letters)

® true

e ac AP atomic proposition
e —dand PAV negation and conjunction
e Ep there exists a path fulfilling ¢
e Ay all paths fulfill ¢

e Formulas over paths (lower case greek letters)

o X in the next moment ¢ holds
o Uy © holds until v
o —pand p AY negation and conjunction
e O the current state satisfies ®
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Semantics of CTL*

A state-formula ® holds in state s (written s = ®) iff

s = true
skEa
sE ¢
sEOA
sEEp
sEAp
A path-formula ¢

=Xy

m = pUd

T = oAy

T

T E®

RT (ICS @ UIBK)

iff ae L(s)
iff s~
VUV iff sE=EdandspE=WV
iff 7 |= ¢ for some path 7 that starts in s
iff 7w = o for all paths 7 that start in s
holds for path 7 (written 7 |= ¢) iff
iff 7[1..] = ¢
iff (35> 0.7[j..] =¢ and (VO < k <j.7[k..] = )
iff T =pand =
iff T}~ ¢
iff 7[0] = ¢
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CTL*

Derived Operators

As usual one can use the following shortcuts:

Fo = trueUep
Gy

_|F —|s0
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Transition System Semantics for CTL*

e For state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|s=o}

e TS satisfies state-formula @ iff ® holds in all its initial states:

I C Sat(®)

Embedding LTL in CTL*
Let ¢ be an LTL-formula. Then

TSk (LTL) iff TSk Ay (CTLY)
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Example

On all paths it is infinitely often served and there always is a possibility to
get back to the main menu
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CTL*-Model Checking Algorithm [Emerson, Lei
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Eliminating Existential Path Quantifiers

Lemma

For every path-formula o the following equivalence is valid:

Proof.

iff
iff
iff
iff
iff
iff

Ep=-A-p

sEEp

there is a path 7 starting in s such that 7 = ¢

it is not the case that there is no path 7 starting in s with 7 = ¢
it is not the case that all paths 7 starting in s violate 7 = ¢

it is not the case that all paths 7 starting in s satisfy 7 = —¢

it is not the case that s = A—gp

sk A
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Use Bottom-Up CTL-Model Checking Procedure

Let TS = (S, —, 1, AP, L)
Compute sets Sat(.) for state-formulas in a bottom-up way:
o Sat(true) =S
e Sat(a)={s|aec L(s)}
e Sat(—~®) =S5\ Sat(P)
o Sat(d A W) = Sat(P) N Sat(V)
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Use LTL-Model Checker for Universal Formulas

e s € Sat(A ) iff all paths 7 starting in s satisfy 7 = ¢
e Essentially, ¢ is LTL-formula but may contain CTL*-state-formulas

= LTL-model checker not directly applicable

Solution

e States which satisfy contained CTL*-state formulas are known

= o Replace every maximal state-formula W in ¢ which is not an atomic
proposition by a new atomic proposition ay, result: LTL-formula ¢’
e Extend labeling of states: Whenever s € Sat(W) then add ay to the set
of labels of s.

o Afterwards apply LTL-model checker to determine Sat(A ¢):

s € Sat(Ayp) iff s = ¢
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CTL*-Model Checki

Example
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Comparison

Formalism LTL CTL CTL*
MC-algorithm NBAs Sat-computation | Sat-computation
(set operations) | (set ops. + NBAs)
MC-complexity || PSPACE-comp. linear PSPACE-comp.
(fixed formula) linear linear linear
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Exercises

e Prove that there is no LTL-formula which is equivalent to
AF(bAAXD)

e Consider the formula ® = AG((—EF serve) V (E GF main))
e Try to formulate the meaning in words

e Apply the CTL*-model checking algorithm on the following example.
Do not construct the NBAs for the LTL-model checking, but do
LTL-model checking intuitively.

main serve main

(3) (5)
1 3) 5

6

serve a ° serve
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