

Introduction to Model Checking

René Thiemann

Institute of Computer Science

University of Innsbruck

WS 2007/2008

Outline

- Last Exercises
- Expressiveness of CTL and LTL

Last Exercises

Last Exercises

Provide a direct fixpoint characterization of $Sat(EG\Phi)$ without using the following equivalence.

$$\mathsf{E}\,\mathsf{G}\,\Phi\equiv\neg\mathsf{A}\,\mathsf{F}\,\neg\Phi\equiv\neg\mathsf{A}\,\mathsf{true}\,\mathsf{U}\,\neg\Phi$$

Expressiveness of CTL and LTL

Theorem (Clarke, Draghicescu)

Let Φ be a CTL-state-formula and φ the LTL-formula that is obtained by eliminating all path quantifiers in Φ . Then:

 $\Phi \equiv \varphi$ or there does not exist any LTL-formula that is equivalent to Φ .

Hence, to prove that A F A G c is not LTL-expressible it suffices to show that A F A G a and F G c are not equivalent.

Expressiveness of CTL and LTL

CTL*

- Formulas over states (capital greek letters)
 - true
 - *a* ∈ *AP*
 - $\neg \Phi$ and $\Phi \wedge \Psi$

 $\neg \varphi$ and $\varphi \wedge \psi$

- E*\varphi*
- A *\varphi*

• Xφ

Φ

 $\varphi \cup \psi$

atomic proposition negation and conjunction there exists a path fulfilling φ all paths fulfill φ

• Formulas over paths (lower case greek letters)

in the next moment φ holds φ holds until ψ negation and conjunction the current state satisfies Φ

Semantics of CTL*

A state-formula Φ holds in state *s* (written *s* $\models \Phi$) iff

$$s \models \text{true}$$

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad s \not\models \Phi$$

$$s \models \Phi \land \Psi \quad \text{iff} \quad s \models \Phi \text{ and } s \models \Psi$$

$$s \models E\varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some path } \pi \text{ that starts in } s$$

$$s \models A\varphi \quad \text{iff} \quad \pi \models \varphi \text{ for all paths } \pi \text{ that start in } s$$
A path-formula φ holds for path π (written $\pi \models \varphi$) iff

$$\pi \models X\varphi \quad \text{iff} \quad \pi[1..] \models \varphi$$

$$\pi \models \varphi \cup \psi \quad \text{iff} \quad (\exists j \ge 0. \pi[j..] \models \psi \text{ and } (\forall 0 \le k < j. \pi[k..] \models \varphi))$$

$$\pi \models \varphi \land \psi \quad \text{iff} \quad \pi \models \varphi \text{ and } \pi \models \psi$$

$$\pi \models \neg \varphi \quad \text{iff} \quad \pi \models \varphi$$

Derived Operators

As usual one can use the following shortcuts:

 $\begin{array}{rcl} \mathsf{F}\,\varphi & \equiv & \mathsf{true}\,\mathsf{U}\,\varphi \\ \mathsf{G}\,\varphi & \equiv & \neg\,\mathsf{F}\,\neg\varphi \end{array}$

Transition System Semantics for CTL*

• For state-formula Φ , the satisfaction set $Sat(\Phi)$ is defined by:

$$Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$$

• TS satisfies state-formula Φ iff Φ holds in all its initial states:

 $I \subseteq Sat(\Phi)$

Embedding LTL in CTL* Let φ be an LTL-formula. Then

$$TS \models \varphi \text{ (LTL)} \quad \text{iff} \quad TS \models \mathsf{A} \varphi \text{ (CTL}^*)$$

Example

On all paths it is infinitely often served and there always is a possibility to get back to the main menu

CTL*-Model Checking Algorithm [Emerson, Lei]

Eliminating Existential Path Quantifiers

Lemma

For every path-formula φ the following equivalence is valid:

 $\mathsf{E}\,\varphi\equiv\neg\mathsf{A}\,\neg\varphi$

Proof.

- $s \models \mathsf{E} \varphi$
- $\text{iff} \quad \text{there is a path } \pi \text{ starting in } s \text{ such that } \pi \models \varphi \\$

iff it is not the case that there is no path π starting in s with $\pi \models \varphi$ iff it is not the case that all paths π starting in s violate $\pi \models \varphi$

- iff it is not the case that all paths π starting in s satisfy $\pi \models \neg \varphi$
- iff it is not the case that $s \models A \neg \varphi$
- iff $s \models \neg A \neg \varphi$

Use Bottom-Up CTL-Model Checking Procedure

Let $TS = (S, \rightarrow, I, AP, L)$ Compute sets Sat(.) for state-formulas in a bottom-up way:

- Sat(true) = S
- $Sat(a) = \{s \mid a \in L(s)\}$
- $Sat(\neg \Phi) = S \setminus Sat(\Phi)$
- $Sat(\Phi \land \Psi) = Sat(\Phi) \cap Sat(\Psi)$

Use LTL-Model Checker for Universal Formulas

- $s \in Sat(A \varphi)$ iff all paths π starting in s satisfy $\pi \models \varphi$
- Essentially, φ is LTL-formula but may contain CTL*-state-formulas
- \Rightarrow LTL-model checker not directly applicable

Solution

- States which satisfy contained CTL*-state formulas are known
- Replace every maximal state-formula Ψ in φ which is not an atomic proposition by a new atomic proposition a_Ψ, result: LTL-formula φ'
 Extend labeling of states: Whenever s ∈ Sat(Ψ) then add a_Ψ to the set of labels of s.
 - Afterwards apply LTL-model checker to determine $Sat(A \varphi)$:

$$s \in Sat(A \varphi)$$
 iff $s \models \varphi'$

Example

Comparison

Formalism	LTL	CTL	CTL*
MC-algorithm	NBAs	Sat-computation	Sat-computation
		(set operations)	(set ops. $+ NBAs$)
MC-complexity	PSPACE-comp.	linear	PSPACE-comp.
(fixed formula)	linear	linear	linear

Exercises

- Prove that there is no LTL-formula which is equivalent to $AF(b \land AXb)$
- Consider the formula $\Phi = AG((\neg EF serve) \lor (EGF main))$
 - Try to formulate the meaning in words
 - Apply the CTL*-model checking algorithm on the following example. Do not construct the NBAs for the LTL-model checking, but do LTL-model checking intuitively.

